Proceedings of the KWS Conference (대한용접접합학회:학술대회논문집)
The Korean Welding and Joining Society
- Semi Annual
Domain
- Materials > Casting/Welding/Joining
2010.05a
-
강재의 구조화에 필수적인 용접 공정 후의 저합금강 용접 열영향부 미세조직 및 재질 예측을 위해 가열 중 상변태 거동에 미치는 초기 결정립 크기의 영향, 석출물-free 오스테나이트 결정립 성장 예측 모델, 임계 석출물 크기의 영향을 고려한 용접 열영향부 석출물 조대화 예측 모델, 석출물의 Kinetics을 고려한 결정립 성장 모델, 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델, 용접 열영향부 경도 예측 모델 등에 대해 연구를 수행하였다. 이를 통해 작성된 최종 모델은 실 용접부와의 비교를 통해 신뢰성을 확인하였으며, 저합금강 용접 열영향부의 미세조직과 경도값을 잘 예측하는 것으로 판단된다. 따라서 본 연구를 통해 작성된 모델을 통하여 용접 열영향부에서의 용접부 품질을 확인하기 위한 시간적, 경제적 비용을 절감할 수 있을 것으로 기대된다.
-
용접입열 (heat input)은 용접시에 외부로부터 가해지는 열량으로 정의되기 때문에, 대입열용접은 용접입열량이 높은 용접이라고 정의할 수 있다. 통상적으로는 기존에 사용하던 용접기법보다 입열량이 높은 경우에 이를 대입열 용접기법이라고 부르게 되는데, 최근에는 편면 SAW 및 EGW기법 등이 대입열 용접기법으로 통칭되고 있다. 이들 기법의 공통된 특징은 one-pass 용접이라는 것과 용접열영향부에서의 열전달이 2차원적이라는 것이다. 본 연구에서는 Rosenthal의 해석식을 이용하여 이들 두 기법의 열전달 특성을 fusion line 위치에서 분석하여 보았는데, 두께에 따른 열전달 특성에 있어서 커다란 차이를 보여 주게 됨을 확인하였다. 편면 SAW에서는 열이력이 두께의 영향을 받아 두께(입열)가 증가함에 따라 고온에서의 유지시간은 증가하고 냉각속도는 느려지게 된다. 그러나 EGW에서는 입열과 두께가 일차함수적인 관계를 가지고 있기 때문에 열이력에 미치는 두께(입열)의 영향이 없다는 결과가 도출되었다. 이러한 차이로 인하여 편면 SAW에서는 강판 두께가 증가함에 따라 fusion line에서의 충격인성은 저하할 것으로 예상되는 반면에 EGW에서는 두께의 영향을 받지 않을 것으로 예상되었다. 그럼으로 EGW용 대입열용접용 강재의 '대입열 용접성'을 정량적으로 평가할 목적으로 '적용 가능한 최대입열 수준' 또는 '적용 가능한 최대 강판두께' 등으로 평가하는 것은 의미가 없는 것이다. 단지 강판의 두께에 따라 강재의 화학조성이나 제조공정에 있어 차이가 있다면, 이로 인한 'EGW 용접성'의 차이는 있을 수 있다.
-
최근에 건조되는 선박이나 구조물들은 점차 대형화 되어가고, 이에 사용되는 판재들은 점차 고강도 극후판재화 되어가고 있다. 극후판재의 용접성을 향상시키기 위해서는 대입열 용접이 주로 적용되고 있는 실정인데, 30 mmt 이상의 후판을 1 pass로 용접하기 위해서는 EGW(Electro-gas welding) 기법을 사용한다. 대입열 용접은 용접입열(heat input)이 매우 높아 용착금속과 열영향부의 냉각속도가 매우 느려 용접열영향부에서 특히 fusion line 근처의 열영향부는 결정립 조대화 및 취약한 미세조직을 형성함으로서 저온인성을 크게 저하시키고, 연화 현상(softening effect)을 발생시켜 강도가 저하되는 문제점이 주로 발생하였다. 하지만 이런 문제점을 해결하기 위해 대입열용접에 사용된는 강재의 미세조직을 제어하여 AlN, TiN,
$TiO_2$ 등의 석출물을 이용한 용접열영향부의 저온인성을 향상시켰다. 이러한 문제점이 발생하는 대입열용접에서 저온인성 시험은 주로 fuison line + 1, 2mm에서 수행한다. 하지만 대입열 용접시 용착금속의 냉각속도도 매우 느리기 때문에 용착금속의 위치에 따라 저온 인성 특성이 다르게 나타날 수 있다. 본 연구에서는 EGW 용착금속의 위치에 따른 저온인성 특성을 평가하기 위해 EH-36N, 40mmt 판재를 사용하여 1pole EG 용접 하였다. 용착금속의 저온인성 특성을 평가하기위해 충격 시편의 노치 위치가 fusion line - 2mm와 용접부 중앙을 기준으로 4곳을 선정하여 충격시험을 수행하였다. 또한 용착금속의 경도 분포를 알아보기 위해 micro vickers hardness tester(mitutoyo UR-501)을 사용해 hardness mapping 시험을 하였다. 용착금속의 저온인성은 미세조직과, 산소량에 따라 변화 할 수 있기 때문에 용착금속 위치를 달리하여 미세조직과 산소량도 각각 분석하였다. 용착금속의 저온인성을 향상시킬 수 있는 침상형페라이트와 비금속개재물의 상관관계에 관해 검토 하였다. -
Mo 변화에 따른 Cr-Mo 강의 미세조직 및 물성병화를 알아보기 위해 새로 디자인된 용접봉을 사용하여 Flux cored arc welding(FCAW) 공정으로 용접하였다. 또한 고온에서의 용접부 물성을 알아보기 위하여 각각의 시편을
$400^{\circ}C$ ,$500^{\circ}C$ ,$600^{\circ}C$ ,$700^{\circ}C$ 에서 24시간 동안 열처리 하였다. 용접부의 미세조직은 미세한 베이나이트 및 침상 페라이트로 구성되었으며 Mo의 함량이 높아질수록 베이나이트 조직이 증가하여 경도 및 강도가 증가하였다. 높은 항복강도와 인장강도를 가지며 연신율이 매우 낮음을 관찰하였다. 열처리후의 미세조직은$400^{\circ}C$ ,$500^{\circ}C$ 는 템퍼드 베이나이트 조직이 나왔으나$600^{\circ}C$ 에서 베이나이트 조직이 성장하였다.$700^{\circ}C$ 로 갈수록 베이나이트가 감소하고 페라이트로 미세조직이 변태 하였으며 탄화물의 석출 및 성장이 관찰되었다. 이로 인하여 경도값이$400^{\circ}C$ ,$;500^{\circ}C$ 에서 증가하였고$600^{\circ}C$ 는 소폭 감소하였으며$700^{\circ}C$ 의 경우 완전 페라이트 조직의 형성으로 경도가 크게 감소하고 Mo 함량에 따른 경도 차이 또한 보이지 않았다. -
GTA (Gas Tungsten Arc)용접은 불활성 분위기에서 용접이 이루어지기 때문에 타 아크용접법에 비해 용접부 품질이 우수하여 고품질이 요구되는 산업분야에 널리 이용되고 있다. 하지만 스테인리스강으로 pipe를 제조하기 위해 GTA 용접을 적용할 경우, Laser 및 고주파 용접 (HFIW)에 비해 용접부 품질 및 용접속도가 낮기 때문에 pipe를 제조하는 산업에서 적용에 제한을 받고 있다. 하지만, GTA는 laser 혹은 HFIW에 비해 가격이 1/10수준으로 낮고, 용접부 gap tolerance 및 용접면 관리범위가 넓은 장점이 있기 때문에 GTA의 용접속도 및 용접품질을 향상시키기 위한 연구가 꾸준히 진행되고 있다. 일반적으로 스테인리스강 GTA용접 시 용접속도를 향상시키기 위해, 모재의 성분 제어 (합금성분 최적화-Al, S, Se, O등), Flux 도포 기술 (산화물을 용접전에 도포하여 용접속도 향상) 및 혼합보호가스 적용 등이 있다. 스테인리스강 용접 시 보호가스로는 용접부 품질을 확보하기 위해 Ar을 주로 사용하고 있다. 하지만 용입 특성을 향상시키기 위해 아크의 온도를 높일 수 있는 He, 혹은
$H_2$ gas를 단독 혹은 혼합하여 사용하고 있다. 오스테나이트계 스테인리스의 경우 용입특성을 향상시키기 위해 Ar에$H_2$ 를 2~10%정도 혼합하여 사용하고 있다. 페라이트계 스테인리스강은 수소에 대한 고용도가 상대적으로 작아 용접부 수소 취화를 일으킬 수 있기 때문에 적용에 제한을 받고 있어 그 대안으로 산소를 극히 소량을 혼합하여 용입성 향상에 대한 연구가 보고 되고 있다. 따라서 본 연구에서는 페라이트계 스테인리스강의 용입특성을 향상시킬 목적으로 Ar에 산소를 미량 첨가 (1%미만) 하여 용접전류 및 산소 함량에 따른 용입특성의 변화에 대해 연구하였다. 또한 기계적인 물성 및 부식특성을 평가하였고, 최종적으로 실용화 가능성을 파악하기 위해 용접전극의 수명 테스트를 실시하였다. 실시한 결과, 산소가 첨가량 증가 할수록 용입특성은 상승하였으며, 기계적인 물성 또한 산소를 첨가하지 않은 경우에 비해 거의 유사한 값을 얻을 수 있었다, 하지만 산소함량이 증가 할수록 전극의 수명은 감소하여 교체주기가 증가함을 알 수 있다. 본 연구를 통해 얻어진 기술을 상용화시키기에는 극복해야할 문제가 있지만, 소재 합금성분 설계 시 용접생산성 향상위한 산소성분 범위를 제시할 수 있으리라 판단된다. -
Kim, Y.H.;Jang, A.Y.;Choi, C.H.;Kang, D.H.;Jeon, J.H.;Byun, J.C.;Jung, G.H.;Lee, S.H.;Lee, H.W. 21
AISI 316L 용접금속의 크롬/니켈 당량비에 따른 시그마상의 영향을 알아보기 위하여 응고모드가 다른 3종류의 플럭스 코어드 와이어를 제작하였다. AISI 316L 시편에 FCAW 프로세스를 적용한 용접재를$650^{\circ}C$ ,$750^{\circ}C$ ,$850^{\circ}C$ ,$950^{\circ}C$ 에서 각 각 1H, 5H, 24H, 72H동안 열처리하였다. 크롬/니켈 당량비가 높을수록 즉, 크롬의 함량이 높아질수록$\delta$ -페라이트 함량은 증가하였으며,$\delta$ -페라이트는 고온에서 시그마상으로 변태되었다.$\delta$ -페라이트는$650^{\circ}C$ 에서 가장 느리게 분해되었으며$850^{\circ}C$ 에서 가장 활발히 분해되었다. 용접부의 특성상 크롬과 니켈 등의 합금원소에 의하여 응고온도범위가 넓어져$950^{\circ}C$ 에서도 시그마상이 석출되었으며, 5시간 이상 유지 시 구형으로 존재하였다. 충격시험 시 시그마상에 의해 취약해진 inter-dendrite 를 따라 파면이 형성되었으며,$-100^{\circ}C$ 이하의 극저온에서는 시그마상의 양과 무관하게 충격흡수에너지는 0에 가까워졌다. 하지만 3%미만의$\delta$ -페라이트를 함유하는 AF모드에서 발생한 DDC와 미량의 시그마상은 충격흡수에너지에 결정적인 영향을 미치지 않았다. -
주물과 용접에서 응고 과정에서 수지상간 또는 세포상간 영역에서 최종적으로 응고하는 저융점 공정 조성의 상이 응고균열의 발생에 직접적으로 영향을 미친다. 작은 량의 공정조성의 액상 필름이 응고된 고상과 고상 사이에 존재하게 되면 이 영역에서 생성되는 불연속부는 응고균열로 남게 된다. 이러한 공정조성 액상의 유동성이 좋고 충분한 부피로 존재한다면 응력과 부피수축등으로 생성된 수지상간, 또는 세포상강 영역에서 생성된 불연속부로 용이하게 유동하여 불연속부를 충진하게 된다. 따라서 발생한 응고균열이 치유되는 효과를 얻을 수 있다. 반면에 공정조상의 상이 전혀 존재하지 않는 순금속 응고의 경우에는 최종 응고 단계에 액상 필름이 존재하지 않게 되어 고상과 고상의 인터로킹이 가능하게 되어 균열 발생 가능성이 희박하다. 따라서 응고균열 발생을 제어할 수 있는 효과적인 방법은 용탕이나 용접금속의 조성을 공정 조성에 가깝게 제어하는 것이다.
-
마찰교반접합(Friction Stir Welding)은 1991년 영국 TWI에서 개발된 접합 법으로서 일정한 속도로 회전하는 툴이 재료내부에 삽입 되면서 툴과 재료사이에서 마찰열이 발생하여 연화된 재료와 접합 툴 사이에서의 기계적 교반에 의해 소성변형이 일어남과 동시에 접합이 이루어진다. 마찰교반접합은 동적 재결정에 의한 접합부의 미세한 결정립 형성으로 인하여 기계적 특성이 향상되며 보호 가스가 필요 없어 친환경적임과 동시에 용융 용접 법에 비해 접합 시 에너지 소모가 적다는 장점이 있다. 마찰교반접합은 기존의 저융점 재료에 관한 접합을 넘어서 최근에는 철계 합금, 타이타늄 합금, 니켈계 합금 등 고융점 재료에서의 적용에 관한 연구가 이루어지고 있다. 하지만 마찰교반접합을 이용하여 위와 같은 강한 재료를 접합하기 위해서는 내구성이 갖추어진 툴이 반드시 수반된다. 슈퍼 오스테나이트계 스테인리스강은 염화물의 농도가 높은 부식 환경에 적용되는 소재로서, 공식(pitting corrosion) 및 틈부식 (crevice corrosion)에 대한 내식성을 높이기 위하여 Mo의 함량을 6%로 낮추고 20~25% Cr과 Ni을 첨가하여 사용된다. 이러한 고합금의 슈퍼 오스테나이트계 스테인리스강은 여타 내식성 합금에 비하여 내식성이 매우 우수한 것으로 알려져 있다. 최근 SO2 배출에 대하여 규제가 강화되면서 화력 발전소용 탈황 설비 중 일부 장비에서 6% Mo가 첨가된 슈퍼 오스테나이트계 스테인리스강의 사용이 늘어나고 있다. 본 연구에서는
$Si_3N_4$ 툴을 사용하여 Mo이 6% 첨가된 슈퍼 오스테나이트계 스테인리스강인 1925hMo강을 마찰교반접합하였다. 툴 회전속도 (200rpm, 300rpm, 460rpm, 700rpm)를 변수로 하여 접합을 실시하였다. 접합 후 외관상태를 점검하였으며 광학현미경 (optical microscope)과 주사전자현미경 (scanning electron microscope)을 사용하여 미세조직 관찰을 하였으며 경도 및 인장강도 측정 등의 실험을 통하여 접합부의 기계적 특성을 평가하였다. 그 후 이러한 결과를 통하여 미세조직과 기계적 특성과의 관련성을 조사하였다. -
마찰교반접합법은 특정한 회전수로 회전하는 용접 툴을 이용하여 접합하고자 하는 피접합재의 맞댄면에 삽입시킨 후 툴을 이동시키거나 혹은 시편을 견고하게 고정시킨 장치(backing plate)가 움직여 고상 상태에서 접합이 이루어진다. 알루미늄, 마그네슘 등 비교적 융점이 낮은 저융점 재료의 재료에 처음 적용이 되어 많은 연구가 활발히 진행되었고 타 용접방법에 비해 우수한 접합특성을 나타내었다. 최근 이러한 마찰교반접합은 이러한 저융점 재료를 넘어서 스틸, 타이타늄, 니켈 등과 같은 고융점 재료 등에 대한 적용이 늘어나고 있다. 마찰교반접합을 이용하여 이러한 고융점 재료의 접합 경우 내마모성 및 내열성 등의 내구성이 갖추어진 툴과 이러한 툴을 냉각시킬 수 있는 냉각 장치 등이 필요로 하나 경제적 측면이나 접합부의 우수한 특성 등을 고려 할 때 그 적용 및 발전 가능성이 매우 높다고 볼 수 있다. 2상 스테인레스 강은 금속 조직적으로 페라이트와 오스테나이트 상이 거의 1:1의 동등한 비율로 매우 미세하게 결합된 구조를 가지고 있다. 또한 이상 스테인레스 강은 각상의 개개의 특성에 기인하여 염소 분위기에서 응력부식 저항성이 우수하고, 공식과 틈부식에 대한 저항성이 매우 뛰어나다. 그리고 이상 스테인레스 강은 비교적 고가인 Ni이 일반 오스테나이트 스테인리스 강의 약 1/2의 수준으로 적게 포함이 되어 경제적인 이점을 지니고 있으며 또한 용접성이 좋아 산업계의 수요는 현재 점차 증가하고 있는 상황이다. 하지만 이러한 이상 스테인리스 강은 용접 후 페라이트 상의 조대화, 그리고 페라이트 상의 분율이 오스테나이트 상의 분율보다 높아지게 되어 용접부에서의 저온 인성 감소 및 내식성 저하 등의 문제가 발생하게 된다. 그리하여 용접 시 이러한 문제점을 해결하기 위해서는 입열량의 조절이 가장 필요로 하는 것으로 알려져 있다. 본 연구에서는 마찰교반용접을 이용하여 두께 3mm의 대표적인 이상 스테인리스 강인 SAF2205 스테인리스 강에 대해 맞대기 마찰교반접합을 실시하였다. 툴 회전속도를 변수로 하여 접합을 실시하였으며 접합 시 툴은
$Si_3N_4$ 툴을 사용하였다. 접합 후 외관상태 점검, 미세조직 관찰, 경도 및 인장강도 측정 등의 실험을 실시하였고, 이러한 결과를 이용하여 미세조직과 기계적 특성과의 관련성을 조사하였다. -
8 wt.% 망간 (Mn) 이 함유된 마르텐사이트계 고 Mn강은 고강도용 강재로 산업현장에 적용될 수 있는 유용한 재료이다. 그러나, 다량의 망간의 함유로 인한 용접성 저하로 상용화를 위해서는 용접성 평가가 필요하다. 본 연구에서는 gleeble simulator 를 통해 열영향부를 재현한 후 local brittle zones(LBZs) 을 규명하였다. 모재는 Electron Probe Micro Analyzer (EPMA) 및 X-Ray Diffractometer(XRD) 로 분석결과 다량의 Mn 함유로 인해 lath마르텐사이트 미세조직과 소량의 잔류 오스테나이트로 구성되어 있었다. 용접부에서 모재까지 Vickers 경도계로 경도 분포를 측정한 결과 coarse-grained heat affected zone (CGHAZ) 에서 fine-grained heat affected zone (FGHAZ) 까지 경도 증가 후 subcritical heat affected zone (SCHAZ) 까지 급격한 경도 감소 거동을 보였다. 열영향부의 미세조직은 투과전자현미경 (TEM)으로 분석하였다. 연성취성천이온도 (DBTT) 측정을 위해 온도 구간을 상온,
$0^{\circ}C$ ,$-20^{\circ}C$ ,$-40^{\circ}C$ ,$-60^{\circ}C$ ,$-80^{\circ}C$ 으로 설정하여 charpy impact test를 시행하였다. 그 결과 coarse-grained heat affected zone(CGHAZ) 에서 조대한 결정립으로 인해 낮은 충격값을 보였다. -
EGW process has been applied to joining of ship block with vertical-up position at high production rate. The workability of EGW, however, has been interrupted by too much slag production. Two electrodes EGW showed more severe workability than that of one electrode EGW. Therefore, to understand the effect of discharge amount of EGW slag on workability and mechanical properties, two different slag discharge amount have been controlled at the same welding conditions. The results are as follows; 1) Workability has been improved by any additional slag discharge. 2) Mechanical properties have been deteriorated with any additional slag discharge. 3) Chemical compositions of weld metal have been changed by any additional slag discharge.
-
청정에너지원의 수요가 증가함에 따라 에너지원의 공급로의 역할을 하는 강관의 수요가 증가하고 있다. 소재가공 기술의 발전과 함께 경량의 고장력 강재의 적용은 공급로의 역할을 하는 강관의 비용절감 및 자원의 효율적 이용 측면에서 지속적으로 연구 개발을 이어왔다. 이러한 추세에 따라 구조용 또는 라인파이프용 강관에서도 고장력 강재의 적용과 함께 고인성 그리고 용접성의 향상을 위한 다양한 라인파이프용 강재의 개발과 이의 적용이 그간 활발히 진행되어왔다. 용도상 반드시 필요한 특성인 고장력, 고인성, 용접성 등 외에도 다양한 강재의 사용에 따른 제조공정상 즉 용접공정에서 발생될 수 있는 용접부의 기계적 특성 변화에 대한 특성 연구 및 기술 연구가 계속 되어왔다. 주로 강관을 생산하는데 쓰이는 ERW (Electric Resistance Welding) 공정에서도 이러한 문제점을 해결하기 위해 많은 연구가 진행되고 있다. ERW는 높은 생산성과 낮은 제조비용의 장점을 가지고 있으나 용접 후 용접부의 기계적 특성 감소로 인한 단점이 있다. 때문에 기계적 특성향상을 위해 최적의 용접조건에 대해 연구해야 할 필요가 있다. 본 연구에서는 4가지 합금강관의 ERW 용접시 용접 입열량의 변화와 용접부의 후열처리를 통한 미세조직의 변화와 기계적 특성에 대해서 고찰하였다. 4강종 시편의 미세조직을 OM, SEM을 통한 분석 이후 인장시험 및 경도시험 등을 통해 기계적 특성을 평가하였다. 대부분의 시편에서 입열량의 증가에 따라 Ferrite 분율이 증가하였고 용접중앙부의 Ferrite 양이 용접경계부 보다 많았다. Ferrite 집중부의 분포가 극명하게 관찰되었던 DP780 (적정) 강종과 미세하게나마 Ferrite 집중부가 존재하였던 K55 (과소, 과대) 강종에서 나란히 경도 하락 현상이 관찰되었다. 이는 강종마다 고유의 Ceq, 합금 중 Mn 농도, 입열량 등에 의한 복합적인 이유 때문으로 판단된다. 탄소가 0.3~0.4 wt% 함유된 중탄소강인 S45C, K55의 경우 용접중앙부와 용접경계부의 페라이트 분율 차이가 큰 것을 알 수 있었다. 이는 용접시 열에 의한 탈탄현상으로 인해 나타나는 현상으로 판단된다.
-
The secondary barrier of cargo containment for membrane LNG tank is composed of composite materials such as rigid triplex (rigid secondary barrier, RSB) and flexible triplex (flexible secondary barrier, FSB). RSB and FSB are adhered to each other using an epoxy adherent and the quality of the secondary barrier depends on the bonding strength between them. The bonding strength between RSB and FSB is greatly influenced by the surface condition of RSB prior to joining. In this study, the effect of surface condition prior to joining on the joint strength and the fracture mode occurred between RSB and FSB have been examined in order to establish a proper surface treatment method for improving the bonding strength at the temperature of
$-170^{\circ}C$ . -
레이저 용접은 고밀도 에너지빔을 이용하는 용접방법으로 아크용접에 비해 빠른 용접과 깊은 용입이 가능하며, 낮은 열이력을 가지는 장점이 있다. 때문에 열에 의해 연화되는 고강도강의 용접에 큰 이점을 가지고 있다. 차체경량화 추세와 더불어 차량에 고강도강의 적용이 늘어나고 있는데 충돌시 차량 구조를 유지시켜주는 범퍼나 B-필러와 같은 부품에 적용되는 무도금 보론 합금강과 알루미늄 코팅 보론 합금강은 핫스템핑(Hot Stamping) 기술에 의해 제조된 소재로 약 1.5GPa의 인장강도를 가진다. 알루미늄 코팅 보론 합금강의 경우 제조공정과 이송 중 소재 표면산화에 의한 산화철발생 또는 표면 탈탄 현상을 방지하기 위해 알루미늄 코팅 처리를 하는데 이러한 코팅층이 용접시 용접부의 물성을 저하시키는 역할을 한다고 보고되어 있다. 본 연구에서는 1.5GPa급 무도금 보론 합금강과 알루미늄 코팅 보론 합금강을 대상으로 레이저 용접을 적용하여 용접부 특성을 파악하고자 하였다. 실험은 겹치기 형상으로 Fiber Laser, Disk Laser를 적용하여 진행하였으며 빔Size, 용접속도, Gap등을 변경하며 해당조건에서의 용입특성, 파단모드, 기계적특성 등을 알아보았다.
-
고강도강의 용접성은 저온균열 저항성으로 대변되는데, TMCP강과 HSLA강 등이 개발되면서 고강도강의 저온균열저항성이 크게 향상되어 무예열 용접성이 확보되었다. 그러나 용접재료 측면에서는 그에 상응하는 재료의 개발이 지연되어 강재 개발로 인한 우수한 성능을 충분히 발휘하지 못하고 있으며 용접부의 건전성 문제가 심각하게 인식되고 있다. 이로 인해 고강도강에 적용시킬 수 있는 무예열 용접재료의 필요성이 대두되어 개발이 진행되고 있으며 상용화를 앞두고 있다. 이러한 용접재료의 개발단계에서 합금설계는 가장 중요한 항목으로 합금 조성에 따라 용착금속의 강도 및 인성에 상당한 변화를 가져오기 때문이다. 합금원소 중 Al은 강재의 탈산을 돕기 때문에 가능한 많은 양의 첨가를 요구하지만 적정량 이상을 초과하게 되면 오히려 용착금속의 저온인성 특성에 부정적인 영향을 미치게 된다. 본 연구에서는 고강도 GMA 용착금속의 Al함량을 단계적으로 변화시켜 용착금속 내 최적의 Al의 함량을 찾고자 하였다. 또한 높은 비용 및 많은 시간을 필요로 하는 와이어로드를 제작하지 않고도 Al함량을 조절 할 수 있는 방법을 고안하고자 하였다. 실험의 모재는 HSLA-100강을 사용하였으며 용접재료는 ER120S-G급의 GMA용접 재료를 사용하였다. 모재 성분과의 희석을 방지하기 위해 V-Groove 가공 후 6패스 Buttering 용접을 실시하였고, 다시 Buttering용접부에 V-Groove 가공을 하여 최종 용접을 실시하였다. 이 때 Al함량을 조절하기 위해 최종 용접 개선부 밑면에 홈을 판 후 Al fiber(직경 0.3mm)를 깔고 용접(입열량 20kJ/cm)하여 Al함유량을 총 3가지(0.003~0.04% Al)로 제어하였다. 용접 후 각각의 시편에 대해 미세조직, 충격시험, O/N분석, 성분분석 등의 시험을 수행하여 저온인성과의 상관관계를 알아보았다.
-
Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were
$Al_2O_3+40TiO_2$ (Metco 131VF) powder of maximum particle size$5{\mu}m$ and${Al_2O_3}99+$ (Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications. -
최근 자동차 산업에서는 차체의 무게를 감소시켜 연비향상과 배기가스의 양을 줄이려는 목적으로 고강도 강재의 차체 적용이 증가하고 있다. 또한 다른 여러 산업에서도 두께 감소를 통한 경량화를 위해 고강도 강재가 사용되고 있다. 고강도 강재를 자동차 차체에 적용하면서 용접성에 대한 새로운 문제가 제기 되고 있으며 그 중 자동차 생산라인에서 차체의 조립공정의 대부분을 차지하는 저항 점 용접에 대한 연구가 중요한 이슈가 되고 있다. 이러한 고강도 강재의 저항 점 용접의 문제점으로는 잦은 날림발생을 들 수 있다. 이는 강도의 증가에 따른 비저항 증가와 필요 가압력의 증가로 인해 입열에 의한 가압부의 소성변형이 쉽게 발생하기 때문이다. 이를 방지하기 위해 현재 다단가압, 다단전류제어 등의 기법들이 시도되고 있다. 본 연구에서는 저항 점 용접의 펄스전류 파형설계를 통해 고강도강 용접의 날림발생을 저감하고자 하였다. 실험소재로는 Al-Si 도금의 1.5GPa 급 강재를 사용하였고 실험조건으로는 기존 로브곡선에서 날림이 발생하는 용접조건을 사용하였다. On/Off 방식의 펄스전류를 이용하여 On/Off 시간에 따른 용접성을 평가하여 이를 기존 용접성과 비교하였다. 또한 펄스전류 파형에 따른 입열과 냉각의 변화와 날림발생에 미치는 영향을 분석하였다.
-
산업현장에서는 파이프 또는 탱크류의 1GR용접에서 안정적인 이면비드를 가지는 루트패스 용접을 위해 2~3mm의 루트갭을 띄우고 용접봉 또는 필러와이어를 사용하는 TIG용접을 주로 한다. TIG용접은 고품질의 이면비드가 얻어지며, 용접인자의 제어가 쉽다는 장점이 있어 루트패스 용접에 많이 사용되고 있지만, 루트갭을 띄우면 이면비드는 잘 얻어지지만 용착금속량이 많아지게 되어 제작원가가 상승되고, 또한 소모성 와이어를 사용하는 GMAW에 비해 생산성이 낮다. 따라서, 안정적인 이면비드를 가지면서 생산성이 높은 1GR GMAW 루트패스 용접공정의 개발이 요구되지만, 이 경우도 루트갭이 2~3mm로 정해져 있으면 Fit-up공정에서 공수가 많이 필요하므로 근본적으로 루트갭이 없는 그루브에 대한 루트패스 용접이 더 바람직하다. 본 연구에서는 루트면 2.7mm를 가지는 U-그루브의 갭 없는 루트패스 용접에서 안정적인 이면비드가 형성되는 조건을 검토하기 위해 2.7t의 평판에 대하여 경사상진 각을 주고 기초 실험 후, U-그루브 맞대기 용접 실험을 진행하였다. 이 때, 경사상진 각은 용융금속이 중력으로 인해 아크 후방으로 밀리게 되고, 그로 인해 아크가 모재에 직접 닿게 되어 용입이 더 깊게되므로, 이면비드의 형성에 더 유리하다. 두께 2.7t의 연강 시편 2개를 갭 없는 I-그루브 맞대기 이음에서 Ǿ1.2 연강 솔리드 와이어를 사용하여 GMAW용접을 실시하였고, 용접전류, 용접속도, 경사상진 각, 위빙 폭, 위빙 주파수를 변경하여 각 조건에 대한 이면비드를 관찰하였다. 그 결과 경사상진 각
$25^{\circ}$ , 전류 200A, 위빙폭 3mm, 위빙주파수 3Hz의 조건에서 안정적인 이면비드를 얻을 수 있었다. 또한, 현장에서 Fit-up중 발생할 수 있는 루트갭의 문제에 대하여 루트갭 1.2mm의 I-그루브 맞대기 용접에서 경사상진 각, 위빙 폭, 위빙 주파수는 갭 없이 실시한 실험에서 얻어진 가장 안정적인 결과를 사용하였고, 용접 전류, 용접 속도를 변경하여 이면비드를 관찰하였다, 그 결과 갭이 없을 때보다 약 80A 낮은 전류 조건인 120A에서 안정적인 이면비드를 얻을 수 있었다. 앞선 실험들을 기초로 하여 U-그루브 맞대기 용접을 실시 하였고, I-그루브 맞대기 용접에서 사용한 조건들과 유사한 용접 전류, 용접 속도에서 안정적인 이면비드를 얻을 수 있었다. -
에어컨용 냉매 압축기, 냉장고용 냉매압축기 및 자동차 샷시 부품들은 주로 겹치기 필릿용접을 GMAW 으로 실시하고 있다. 그러나 용접 시 스패터 발생으로 인한 추가공수가 요구되며 작업환경 또한 열악한 실정이다. 따라서 저가의 고생산이면서 용접비드의 외관이 미려하고 스패터, 소음 그리고 Fume 이 발생되지 않는 청정한 TIG 용접이 있지만, 용접속도가 수십 cpm 이하로 제한되어 생산성이 낮다는 기술적 모순을 가지고 있다. TIG 용접에서 생산성을 증가시키기 위해 모재와 와이어를 고속 용융 시키려면 전류를 높여 입열량을 증가시켜야 하지만, 증가된 전류로 인하여 상승된 아크력이 험핑비드와 언더컷이 발생되는 물리적 모순을 가진다. 또한 필러와이어를 사용한 기존의 TIG 용접에서 필러 와이어는 주로 원형 단면 와이어를 사용하게 되는데 와이어의 직경이 증가함에 따라 비표면적은 감소하여 용융효율이 낮아지므로
$\Phi$ 1.2 이하의 필러와이어를 송급하여 용접하였다. 그러나 요구되는 용착량이 큰 경우 필러 와이어를 고속으로 송급하게 되는데 이 경우 필러 와이어 용융이 곤란하거나 송급상의 문제가 자주 생겨 용접속도를 고속으로 하기 곤란하였다. 따라서 필러와이어를 사용한 TIG 용접에서 용착금속의 용융효율을 높게 함으로서 전류를 크게 증가시키지 않으면서도 용접속도를 높일 수 있는 용접 공정개발이 필요한 실정이다. 본 연구에서는 비표면적을 증가시켜 용착금속의 높은 용융효율을 얻을 수 있도록 개발된 와이어와 기존의$\Phi$ 3.2 일반와이어 및 를 이용하여 BOP TIG 용접에 비교 실험하였으며, 개발된 와이어와 기존의$\Phi$ 1.2 필러와이어를 이용하여 필릿용접부에 적용 실험하여 비교하였다. 그 결과 개발된 와이어의 경우 적절한 비드를 형성하였으나 3.2 일반와이어의 경우 과도한 볼록비드와 불용착부의 문제가 발생하였고, 필릿용접 비교실험에서는 각각 200cpm과 50cpm에서 적절한 비드가 형성되어 더 높은 용착금속 용융효율을 얻을 수 있었다. -
알루미늄 합금은 질량 대비 강도가 우수하고 내식성 및 저온 특성이 양호하여 구조재로서 널리 사용되고 있다. 또한 그 사용 추세가 점점 증가 하고 있으며 알루미늄 합금의 용접을 위해 현재까지 다양한 용접 공정이 적용되었다. 일반적으로 GMAW, GTAW 등의 아크 용접과 박판의 경우 저항 점용접, 그 외의
$CO_2$ laser, Nd:YAG laser와 같은 고밀도 에너지 용접 공정에 의한 연구 결과들이 많이 발표 되었다. 하지만 알루미늄 합금의 특성 상 용접부에 기공과 균열과 같은 결함들이 각 공정에서 많이 발생하며 이러한 결함을 감소시키기 위한 용접기술에 관해 많은 연구가 진행되고 있다. 본 연구에서는 GMAW, Plasma-GMAW 공정을 적용하여 알루미늄 합금의 용접특성을 비교하였다. 알루미늄 합금 Al 5052, Al 6061 4mm 두께 모재에 대해 BOP(Bead On Plate) 용접실험을 실시하였으며 생산성 측면에서 각 공정에 따라 완전 용입 시 최대 용접 속도를 측정하여 비교하였다. 용접 품질 측면에서는 비드 표면 및 단면을 검사하고 인장시험을 수행하였으며, 용접 기공과 균열을 X-ray 촬영을 통해 비교하였다. 또한 고속카메라 촬영을 통해 용접 중 플라즈마로 인한 산화막 제거 효과를 확인하고 각 공정별 용접 시작부의 아크 안정성을 평가하였다. 인장시험 결과 모든 모드에서 모재에서 파단됨을 확인 하였고, Plasma-GMAW 공정의 경우 플라즈마의 예열효과로 인하여 GMAW 보다 완전용입 기준 용접속도가 빨랐으며, 청정작용도 우수한 것으로 확인되었다. -
As the nuclear power plant has been constructed continuously for several decades in Korea, the welding technology for components manufacturing and installation has been improved largely. Standardization for weld test and qualification was also established systematically according to the concerned code. The welding for the main components requires the high reliability to keep the constant quality level, which means the repeatability of weld quality. Therefore the weld process qualified by thorough test and evaluation is able to be applied for manufacturing. Narrow gap SAW and GTAW process are usually applied for girth seam welding of pressure vessel like Reactor vessel, steam generator, and etc. For the surface cladding with stainless steel and Inconel material, strip welding process is mainly used. Inside cladding of nozzles is additionally applied with Hot wire GTAW and semi-auto welding process. Especially the weld joint having elliptical weld line on curved surface needs a specialized weld system which is automatically rotating with adjusting position of the head torch. The small sized pipe, tube, and internal parts of reactor vessel requests precise weld processes like an automatic GTAW and electron beam welding. Welding of dissimilar materials including Inconel690 material has high possibility of weld defects like a lack of fusion, various types of crack. To avoid these kinds of problem, optimum weld parameters and sequence should be set up through the many tests. As the life extension of nuclear power plant is general trend, weld technologies having higher reliability is required gradually. More development of specialized welding systems, weld part analysis and evaluation, and life prediction for main components should be taken into a consideration extensively.
-
지구온난화의 심화로 사회적으로 환경의 중요성에 대한 인식이 확산되면서
$CO_2$ 배기가스 및 연비와 직결되어 있는 자동차 중량 절감의 중요성이 강조됨에 따라 차체 경량화 기술은 환경 친화적인 자동차 개발의 핵심기술로 연구되고 있다. 그러나 충돌보호 장치 및 편의장치의 증가로 차체 중량은 지속적으로 증가하고 있어 차체 중량을 혁신적으로 절감할 수 있는 초경량 차체기술이 요구된다. 차체 경량화 방법으로 기존 강재를 알루미늄재로 대체하는 방안이 연구되고 있으며, 일부 해외 고급 차종에서 알루미늄재를 이용한 스페이스 프레임 및 부품 개발을 검토 적용 중이다. 그러나 알루미늄 단일재 사용은 안전성등에서 요구 성능을 만족시키기 어렵기 때문에 강재와 알루미늄재의 적절한 사용이 필요하다. 이를 위하여 강재와 알루미늄간 이종접합부가 발생하며 이를 위한 적정 공정 개발이 필요하다. 전자기 펄스 용접(MPW)은 고상접합의 한 종류로서 고전류를 순간적으로 방전하여 발생된 고에너지를 통하여 접합이 이루어진다. 이러한 고에너지는 외부재의 전 자기적 성질에 의하여 에너지량이 결정되므로 외부재의 전도도(conductivity)는 매우 중요하며 이러한 이유로 Aluminum 1xxx계 중심의 전자기 펄스 용접 공정이 연구되었다. 그러나 자동차 스페이스 프레임 및 드라이브 샤프트등과 같은 부품에 알루미늄재를 적용하기 위해서는 일정 강도를 확보할 수 있는 6xxx계의 관련 연구가 필요하다. 따라서 본 연구에서는 고품질의 접합부 확보를 위한 1xxx계와 6xxx의 최적의 공정변수(충전전압, 외부재와 내부재 사이의 간격, 외부재 두께)를 도출하였다. 이를 위하여 전자기 펄스 용접 장치는 한국생산기술연구원과 웰메이트(주)에서 공동으로 개발한$120{\mu}F$ 의 캐패시터 6개로 구성된 'W-MPW36'을 사용하였으며 접합 후 누수시험을 통하여 접합부의 품질을 검토하였다. -
소형 공조장치용 냉매 압축기 부품인 기계식 제어 밸브는 에어컨 컴프레서의 핵심부품이고 년간 수백만 개가 국내에 수입된다. 이를 국산화 하기 위하여 진공로 속에서의 브레이징 공정이 수반되는 외국제품의 제조공정을 탈피하여 진공 속에서 DC 프로젝션 용접을 수행하는 기법을 개발하였다. 실린더 형상의 캡과 케이스를 맞대고 그 사이에 박판을 삽입한 상태에서 butt welding 방식으로 진행되는 본 공정에서는, 생산성이 높고 서보가압 장치를 사용하여 soft touch 를 구현하므로 프로젝션이 손상되지 않은 상태에서 통전이 시작되고 2 단 가압 및 프로파일 가압이 가능하므로 링(ring)형상의 너깃이 축대칭으로 안정적으로 형성되기 때문에 실린더 내부의 밀봉성능이 우수함을 확인하였다. 진공로 속에서 본 가압장치를 설치하여 간편한 방법으로 실린더 내부의 진공상태를 유지할 수 있기 때문에 진공로 속에서의 브레이징 공정이 적용되는 외국제품보다 생산성이 월등함을 알 수 있다. 본 연구에서 개발된 링 프로젝션(ring projection) 용접기법은 초소형 및 소형 실린더 형상의 부품 내부를 진공으로 유지해야 하는 산업현장에서 당장 적용될 수 있는 혁신적인 용접공정이라 판단된다.
-
용접은 산업계의 기계 조립 및 접합을 위한 공정의 주요한 작업으로 조선, 중공업, 건설 등 산업현장에서 사람에 의한 수동적인 작업으로 대부분 수행된다. 이러한 용접 작업을 수행하는 용접 기술자는 산업 현장 훈련원과 직업 교육 학교에서 양성되지만 용접 훈련 과정은 실습 초보자에게 위험하고, 장시간 교육하기에 어려울 뿐 아니라 재료 낭비, 의사 소통의 한계, 즉석 결과 평가의 한계, 공간부족 등 다양한 문제가 있다. 그러므로, 안전하고 반복적인 실습 환경 제공하고 장시간 및 다수 교육참여 지원 등이 가능한 시스템을 구축하여 숙련된 우수 인력 조기 확보와 훈련 비용을 절감할 필요가 있다. 본 논문에서는 실제와 동일한 상호작용을 제공할 뿐만 아니라 고품질로 훈련 환경을 가시화하여 용접 상황을 동일하게 모사하는 가상 현실 기반 용접 훈련 시뮬레이터를 제시한다. 이 시스템은 용접의 형상과 환경의 고품질 가시화, 경험 DB를 통한 용접의 비드 형상 데이터 획득, 용접 토치를 이용하는 사용자 상호작용, 용접 훈련 결과 평가 및 최적 작업 가이드, 용접 콘텐츠 저작, 다양한 용접 훈련을 가시화하는 하드웨어 플랫폼으로 구성된다. 고품질 가상 용접 가시화는 경험 DB 기반 비드 형상 데이터와 신경회로망을 이용한 비드 형상 예측을 통해 실시간 비드 표현이 이루어지며 쉐이더 기반 고품질 모재 및 비드 표현, 아크 불꽃 효과 표현을 포함한다. 사용자 상호작용은 현장 작업 도구와 일치된 토치 인터페이스와 위치추적을 이용하여 토치의 작업각, 진행각, 속도, 거리 등을 반영할 수 있으며 진동과 소리 등 용접 훈련의 사실적 상호작용도 재현하였다. 용접 훈련 평가 및 최적 작업 가이드는 훈련자의 용접속도, 거리, 각도 등의 사용자 작업 결과를 그래픽으로 표현하고, 애니메이션을 통한 훈련 자세를 추후 분석할 수 있도록 하였고, 가상토치, 기준선, 수치계기 등을 이용한 최적 작업 훈련 가이드 제시하였다. 훈련 콘텐츠 저작은 메뉴UI 기반으로 용접의 전류, 전압 등의 조건과 상황을 선택하도록 제시하였고, 하드웨어 플랫폼은 워크벤치형 입체 디스플레이 방식으로 용접 환경을 가시화하였고, 위, 정면, 아래보기 등 다양한 용접 자세 변경을 지원 할 수 있도록 구축하였다. 이러한 가상현실 기반 훈련 시뮬레이터는 아크열 발생에 따른 장시간 훈련의 어려움을 극복할 수 있고, 다양한 실습 환경을 바꾸어 가며 반복적인 훈련이 가능하고, 실 재료를 사용하지 않아 재료의 낭비를 줄일 수 있는 환경 친화적인 안전하고 효율적인 훈련 실습 환경을 제공할 수 있다.
-
최근 토요타 자동차의 대량 리콜 사태로 안전과 관련된 자동차 품질에 대한 관심과 중요성이 크게 부각되었다. 본 연구에서는 나날이 높아지고 있는 자동차 품질 기준과 생산 비용 절감, 공정 자동화 요구에 부응하기 위한 차체 저항 점 용접부 품질 검사 자동화 기술 개발을 위해 적용 가능한 센서들을 비교, 검토하였다. 알려진 비파괴 검사 방법은 초음파, 와전류, 방사선 검사법 등 다양한 방법들이 존재하지만, 이 연구에서는 생산 라인 현장 적용이 가능한 소형 센서들을 중심으로 검토 영역을 제한하였다. 검토된 비파괴 검사 방법은 총 5가지 종류로 종래의 수동 초음파 검사법, 집적된 탐촉자를 이용한 3차원 초음파 검사법, NAUT(Non-contact Air-coupled Ultrasonic Test), EMAT(EletroMagnetic Acoustic Test), 그리고 너겟 프로파일러
$^{TM}$ 이다. 이 연구에서는 각 검사법의 원리와 장단점을 설명하고 생산 라인 적용에 필요한 필수 항목들에 대해 고찰하였다. -
Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.
-
선박건조에 있어서 대형 블록의 조립이 이루어지는 선행 탑재 및 탑재 단계에서 Tank Top과 Upper Deck의 V 개선 용접은 FCAW+SAW의 복합용접이 실시되고 있다. 그러나 가장 범용적 모재 두께인 18~20t의 경우 SAW 시공에만 약 5~6Pass가 소요됨으로써 다급한 진수 일정에 많은 지장을 초래하고 있다. 또한 능률 향상을 목적으로 용착량 증가효과를 얻기 위해 철분말이나 절선와이어를 개선면내에 충진하고 용접을 수행하나 획기적인 용접능률을 기대하기 어렵고 용접사 기량에 따라 용접 결함이 발생될 수 있다. 이에 따라 용접패스 수를 줄이고 결함 발생이 없는 용접기법 개발이 절실히 필요하였다. 이를 위해 매우 간단하고 효율적인 위빙장치를 제작하여 선탑/탑재 아래보기 용접이음에 1~2패스의 SAW 용접법을 개발하여 용접생산성은 물론 용접품질까지 획기적으로 향상시키는 기술 개발을 완료하였다.
-
The purpose of this paper is to propose a mathematical model of welding current for the P-GMAW by modifying the well known GMAW model. Welding power circuit is simply modeled as a RL electric circuit and solved as an ODE equation. The welding current depends on the joint shape, molten pool and welding parameters. To compare the molten pool effect to the welding current, CFD numerical simulation technique was adopted. Welding experiment is also conducted with the same welding parameters as used in numerical simulations to verify the proposed welding current model. The current model which is considered molten pool shape, is more fit to experiment result.
-
마그네슘 판재는 경량화 소재로 주목받는 소재이다. 본 연구는 압연 마그네슘 판재의 용접시 발생하는 온도이력 및 응력에 대한 해석을 수행하였다. 해석은 2차원 해석을 수행하였으며 해석수행에 있어서 열물성값은 기존의 데이터를 이용하였으며 응력해석은 온도별 고온 인장시험을 수행한 결과를 이용하여 해석을 수행하였다. 본 연구에서 수행한 대상은 마그네슘 압연판재인 AZ31B 이며 두께 3.5 mm 판재를 GTAW용접을 수행한 경우에 대하여 검토하였으며, 해석결과 중 온도분포의 한 예를 그림 1에 나타낸다.
-
최근 강구조물의 건설이 지속적으로 증가되어 왔다. 또한 강구조물의 유지관리 및 안전성에 대한 관심이 급증하고 있다. 시설물의 안전성 확보는 대형사고의 사전 예방, 공용 중 갑작스런 가동 중지에 의하여 발생되는 비용증가를 사전에 차단 할 수 있다는 점에서 그 중요성은 매우 크다고 할 수 있다. 또한 각종 구조물은 열악한 사용조건, 고온, 고압, 고속, 대형화됨에 따라 일단 사고가 발생 했을 경우 대형사고의 위험이 예상되므로, 제작시 검사의 강화뿐만이 아니라 공용 중 구조물의 안전성을 진단 할 수 있는 모니터링 체계의 확립이 필요한 시점이다. 현재 국내에서 강구조물들의 균열 모니터링 시스템에 관한 연구는 매우 미흡한 실정이며, 현재 사용되고 있는 비파괴검사 방법은 UT와 RT등이다. 이러한 방법들은 많은 시간과 경비가 소요되며 또한 거대구조물 혹은 사람의 접근이 어려운 곳에는 적용하기가 힘들다. 또한 주기적인 검사 작업으로 인한 막대한 시간과 비용의 손실이 발생되고 있으며 초기 결함을 조기에 인지하지 못함으로써 적절한 보수 보강 대책이 이루어지지 않아 보수 보강 비용의 증대를 초래한다. 더욱이, 결함이 진전된 이후에도 이것을 인지하지 못하여 적절한 대응을 하지 않는다면 대형사고로 이어질 수도 있다. 따라서 강구조물에 대한 효율적인 유지관리가 가능하고, 초기결함으로부터 균열이 진전하여 붕괴되는 사고를 미연에 방지하며 초기에 보수보강 작업을 수행함으로써 보수보강 비용도 절감 할 수 있는 모니터링 시스템의 개발이 요구되고 있다. 이러한 모니터링 시스템의 개발은 기술적 측면에서 강구조물의 효율적인 유지 관리 노하우를 얻을 수 있으며 경제 산업적 측면에서는 보수 보강 비용 및 불필요한 주기적 점검 비용을 절감 할 수 있다. 이 연구에서는 전위차법을 이용하여 강구조물의 필렛 용접부에서의 균열진전양상을 파악하고 정량화를 통해 필렛용접부의 잔여수명을 예측하였다.
-
For thin panel welded structure, the various welding distortions were found due to the low resistance against welding deformation. Especially, buckling distortion induced in the thin panel welded structure produce severe problems related to cost in production stage and safety in service life. So, many researches including mechanical and thermal tensioning method for preventing the occurrence of buckling distortion in the production stage have been performed. The purpose of this study is to identify the behavior of longitudinal residual stress at the SA butt weldment with thin plate of 6mm thickness under tension load by 3 dimensional FEA. For it, mesh design for 3D FEA was constructed with 20 nodes brick element for butt weldment and 8 nodes shell element for base metal. According to FEA results, the longitudinal compressive strain inducing tensile residual stress at the butt weldment decreased. It was because the compressive thermal strain in way of weldment was reduced by tension load. The control effect of residual stress increased with an increase in tension load. So, if the amount of tension load applied to the weldment exceeds 1.5 times of longitudinal shrinkage force, the amount of longitudinal residual stress decreased below the critical value inducing the buckling distortion at the SA butt weldment. Its validity was verified by experiment.
-
The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.
-
Friction stir welding has become a viable and important manufacturing alternative or fabrication component, especially in aerospace and automobile applications involving aluminium alloys. In recent years, there is an increasing interest for FSW of dissimilar metals and alloys, particularly systems which are difficult to weld by conventional, thermal (or fusion) welding. In this study we tried to analyse the complex heat distribution occurring in TIG assisted FSW of dissimilar butt joint (STS304 and Al6061). For this, an analytical model for heat generation by FSW based on contact conditions has been developed. The heat input was calculated considering the coefficient of friction and slip factor between each work piece material with the tool material. The thermal model is used to generate the temperature characteristics curve, which successfully predicts the maximum welding temperature in each alloys. The analysis was carried out using the in-house solver.
-
Since the curved hull plate was made by a series of manufacturing process including cold bending, manual local heating and correction work, the accuracy of curved plate strongly depends on the proficiency of worker. So the demands on the automatic local heating system for curved hull plate have continuously increased and the various researches relevant to it have been performed. Generally, the heat sources used for local heating were flame and induction heat. In terms of initial cost, flame heating is in a better favorable position than induction heating. However, from the viewpoint of the control of heat, induction heating has more advantage. So the various researches related to apply the induction heating to the automatic forming system has been performed. The purpose of this study is to establish the proper capacity of high frequency induction heating system for forming the curved hull plate. In order to do it, the proper coil shape for local heating was designed and the efficiency of induction heating system was determined by comparing of temperature results obtained by FEA and experiment. With the results, the extensive FEA was performed to identify the effect of heated plate dimension, cooling method and the capacity of induction heating system on the amount of heat loss introduced by induction heating. Based on the results, the proper capacity of high frequency induction heating system was proposed.
-
The purpose of this study is to prevent the unstable fracture at the FCA butt weldment of hatch coaming deck in the ultra large containership during service life. In order to do it, the behavior of the embedded crack at the weldment under design loading conditions was evaluated in accordance with BS7910. Here, the level of primary stress induced by ship motion was evaluated by the design code of classification society and FEA. The level of residual stress as secondary stress was calculated in consideration of the restraint degree of weldment and welding heat input by using the predictive equation proposed by authors in the previous study. The fatigue crack growth rate at the weldment was evaluated using CT specimen in accordance with ASTM E647. According to the results, although the allowable defect for embedded crack specified in the classification society exists at the weldment, the occurrence possibility of unstable fracture at the weldment could not be negligible, regardless of CTOD value given in this study. So, in this study, the effect of initial defect size, welding heat input, restraint degree and CTOD on the fracture mechanical characteristics of embedded crack at the weldment was evaluated by the comprehensive fracture assessment. Based on the results, the design criteria including allowable defect, residual stress level and CTOD value was established to prevent the unstable fracture at the FCA butt weldment of hatch coaming deck in an ultra large containership during service life of 20years.
-
PVC(Polyvinyl Chloride)와 HDPE(High-density Polyethlene) 하수도관은 수많은 고분자 재료 중에도 높은 기계적 강도를 가지며, 광범위하게 사용되고 있다. 하지만, PVC와 HDPE 하수관을 연결하기 위해 소모 접착제나 고무링 이용한 소켓 방법 이음 방법은 낮은 수밀성과 기계적 강도로 오 폐수의 누수가 발생되고, 이것이 흙에 스며들어 지하수, 하천 및 토양을 오염시키고 있다. 따라서, 대안으로 최근에는 열판을 이용한 맞대기 융착 용접을 PE 하수도 관에 제한적으로 적용하여 시공하고 있다. 그러나, PVC 하수관은 열을 가할 시 열에 의한 민감한 거동으로 인해 맞대기 융착 용접법이 적용되지 못하고 있는 실정이다. 따라서 본 연구에서는 하수도 관 중, 국내에서 가장 많이 사용되고 있는 내 충격 PVC 하수도관과 HDPE 이중 벽관의 DSC(Diffential Scanning Calorimeter), TGA(Thermogravimetric analyzer), TMA(Thermomechanical Analysis), DMA(Dynamic Mechanical Analysis) 분석으로 온도에 따른 열적 거동을 분석하여, 적절한 융착 온도 조건을 제시하였다. 또한 접합강도 향상을 위한 이음부 설계를 제안하여, 융착 용접 특성을 평가하였다.
-
Park, Tae-Won;Song, Young-Bum;Kim, Jin-Young;Yang, Seong-Ho;Hong, Sung-Suk;Shim, In-Ok;Park, Chul-Kyu;Kim, Hee-Jin 63
The pre-heat free consumables for GMAW, SAW and FCAW processes that matches the Cu-bearing PFS-700 steel which has yield strength over 700MPa were developed and evaluated to see the suitability in military such as submarine and battle ship. Explosion bulge test in underwater was developed and applied to see the reliability of welded structure. All welding was conducted without pre-heat before welding, the interpass temperature was below$150^{\circ}C$ for all welding conditions. Tensile strength for the weld metal in GMAW, SAW and FCAW process is 887MPa, 875MPa and 813MPa, respectively, these values are similar to the base metal of PFS-700 steel of 838MPa. EBT results in GMAW, SAW and FCAW show 14.0%, 14.02% and 15.9% reduction of thickness without generation of crack, respectively and stand-off distance was set up properly to have over 14.0% reduction of thickness. Through EBT results, the developed new consumables are applicable to the weapon systems such as submarine and battle ship. -
최근 그린 친환경, 지구온난화방지와 환경 부하물질저감, 기기 고효율화, 연비향상 등의 관점에서 항공기, 자동차 등 운송기계와 휴대용 전자제품 등 경량화가 요구되는 분야에서 경량합금의 사용이 급증하고 있다. 특히, 경량합금 중 가장 가벼운 마그네슘 합금은 최근 주목을 받고 있는 금속재료이다. 그러나 마그네슘합금은 알루미늄합금과는 달리 상온 성형성 및 접합성이 양호하지 않은 관계로 판재를 이용한 구조부품의 제작을 위해서는 많은 연구가 필요하다. 이러한 관점에서 본 연구는 마그네슘합금 판재의 마찰 교반 점용접을 시도하였다. CNC 밀링머신을 사용하여 프로브의 회전 및 삽입 속도에 변화를 주어 접합 특성을 평가하였고, 각 변수의 영향을 조사하였다. 적외선 열화상기와 로드셀을 사용하여 마찰 교반 점용접 중에 발생하는 교반부 온도와 접합부에 가해지는 수직부가하중의 거동을 측정하였다. 마찰 교반 점용접 후, 시험편의 접합 상태와 접합부 단면 관찰을 통해 접합 상태를 조사하였다. 그리고 인장전단 실험을 실시하여 마찰 교반 점용접된 시혐편의 접합강도를 평가하였고, 파단된 시험편의 파면을 관찰하였다.
-
Kim, Young-Zoo;Cho, Bang-Hyun;Amit, Amit;Lee, Sang-Bum;Lee, Weon-Gu;Kim, Jin-Yong;Huh, Man-Joo 65
In shipbuilding industry, welding position are usually flat and vertical position at the erection stage. Application of SAW and EGW for these positions makes it possible to achieve enhanced productivity and high quality. But owing to their large size and weight it is difficult to apply these techniques in short and narrow regions. To overcome this problem, our company developed light weight and compact size 4-axis welding carriage which perform 3D weaving. The purpose of this study is to explain the development and application of intelligent welding carriage using 3D weaving pattern that can fill a large amount of welds and thereby making it possible to achieve high quality of welding. This study shows 3D weaving pattern, development of weaving database, and skill of adaptive control response for the variable gap. Also, it shows the results of procedure qualification test for the AH-grade steel when applied to the intelligent welding carriage. -
국내 화력발전의
$CO_2$ 배출량을 크게 줄이고, 친환경, 그린 화력발전시스템을 위한 가장 효과적인 수단은 발전효율을 획기적으로 증대시키는 것이기 때문에 이를 목표로 한 기술개발은 경제적으로나 산업적으로 파급효과가 매우 크다. 발전효율 증대를 위한 핵심기술은 증기터빈의 성능향상이다. 현재 일본, 미국, EU 등 각국이 가장 관심을 가지고 기술개발에 심혈을 쏟고 있는 초내열, 내식 합금소재는$700^{\circ}C$ 이상에서 기계적 성능을 보장할 수 있는 Ni기 합금개발이고, 현재까지 상당한 기술수준에 이르고 있는 것으로 파악되고 있다. 국내의 경우는 관련기술개발을 위해 연구가 진행되고 있으나, 기술적으로 아직 미흡한 수준이다. Ni기 초내열, 내식합금을 개발해서 그것을 화력발전용 증기터빈 부품, 특히 초내열합금 용접형 터빈로터 소재로 이용하기 위해서는 체계적이고 실용적인 연구를 통하여 용접형로타의 내구성과 신뢰성이 보장되는 최적 수준의 접합기술 개발이 선행되어야 한다. 따라서 본 연구는 선행연구로$700^{\circ}C$ 이상 초내열/내식 Ni기 합금소재의 용접기술 개발을 위한 후보 소재 Alloy 617의 동종재료 용접 기술 개발을 목표로 한다. 본 연구는 Alloy617 12.6t 맞대기 이음으로 U그루브 내로갭 TIG용접을 하였다. 1pass 1layer 방식으로 총 8pass 8layer로 용접하였다. 전류 및 용접속도는 동일하게 두고 실드가스를 Ar 또는 Ar-$H_2$ 가스로 변경하여 시험하였다. Ar가스 TIG용접은 비드표면에 산화스케일이 생기고, 비드면이 거칠며 전체적으로 산화되었다. 반면에 Ar-$H_2$ 가스 TIG용접은 비드표면에 산화스케일이 없으며 표면이 미려하고 산화되지 않았다. 실드가스에 수소가스 첨가시 환원성가스로 역할을 하게 되고 이에 따라 용융지 표면에 산화피막을 제거하여 용접비드를 청정하게 하는 효과를 가진다. -
최근 전 세계적으로 유가상승 및 환경에 대한 관심이 증대되면서 자동차 업계에서는 차량 경량화를 통한 연비향상에 대한 연구가 활발히 진행되고 있다. 대표적인 차량 경량화 방법으로 초경량 철강 차체의 개발을 들 수 있는데 이는 고강도강을 차체에 적용함으로써 강성을 증대시킴과 동시에 두께 감소에 의한 경량화를 이루는 방법이다. 하지만 고강도강은 자체의 높은 강성을 지니는 반면 첨가된 합금원소에 의하여 용접성이 떨어지는 제약을 가지고 있다. 펄스 GMA 용접은 One Drop Per Pulse (ODPP) 의 안정된 용적 이행으로 스패터 발생이 거의 없으며 일반 GMA 용접에 비하여 용접성이 우수하여 자동차 차체 조립공정에 적용되고 있다. 본 연구에서는 440MPa 급 도금, 비도금 강판 및 이종 강판의 겹치기 용접 실험을 통해 강종별, 두께별 펄스 아크 용접에 대한 용접성 평가 및 데이터 베이스를 구축하고자 하였다. 용접부 단면마크로, 인장시험, 경도시험을 통해 적정 용접영역을 확보하였으머, 고속카메라 촬영을 통해 보호가스에 따른 용적 이행 현상을 확인하였다.
-
최근 컨테이너 선박의 초대형화로 극후물 고장력 강재인 항복응력 460MPa급 고장력강인 EH47이 개발되었다. 두께 80mm의 극후물 용접에서 용접생산성 향상을 위하여 EGW/FCAW로 양면 용접이 검토되고, 입열량은 최대 300kJ/cm의 대입열 용접이 요구된다. 이를 위해서는 강재 및 용접재료 모두 300kJ/cm 용접부 성능이 선급 규격을 만족하여야 함은 물론 마지막 조립단계에서 적용되기 때문에 용접재료의 용접작업성도 매우 크게 요구되고 있다. 먼저 대입열 용접금속에서 요구되는 저온 충격인성(
$vE_{-20^{\circ}C}{\geq}57J$ )을 만족하기 위하여는 용접금속의 미세조직 제어가 필요하며, 특히 조대한 입계페라이트 생성을 억제하고 미세한 입내 페라이트를 균일 분포하는 것이 중요하지만, 이를 위해 용접금속의 소입성이 지나치게 높이면 경화조직인 베이나이트 분율이 증가하여 오히려 용접금속 저온 충격인성을 저하시키므로, 적절한 용접금속의 성분 제어가 중요하다. 한편 용접부는 선급에서 요구하는 최소 강도인 570MPa를 만족하기 위하여 용접금속의 소성구속 현상을 활용하여 용접부 인장강도를 확보 할 수 있음을 확인했다. 이를 위해서는 용접금속의 적정한 경화도 확보가 필요하였다. 전술한 바와 같이 대입열 용접금속 저온 충격인성 확보와 용접부 강도 측면을 고려하여 용접금속 최적의 탄소당량 범위를 제시코자 하였다. 한편 용접재료의 용접작업성은 EGW용접의 용적이행 현상은 자유비행이행으로 이루어지고 있으며 특성상 용접중 용적과 용융지 사이에 많은 순간단락 현상을 동반하고 있으며, 슬래그 유동이 불안정하면 아크 꺼짐 현상도 관찰되고 있다. 따라서, 현장용접시 원할한 용접작업성을 확보할 수 있는 평가 기준으로써 아크 전류 및 전압의 변동 정도를 설정하고, 용접재료의 용접작업성 확보 기준을 제시코자 하였다. -
In the present study, to estimate the mechanical properties of 800 MPa grade weld metal, welding was carried out using 800 and 600 MPa grade flux cored arc welding (FCAW) consumable and characteristics of the weld metals were investigated. The chemical composition of weld metals was investigated by an optical emission spectroscopy (OES) method. The microstructure of weld metals was analyzed by optical microscopy (OM) and secondary electron microscopy (SEM). The compositions and sizes of inclusions which are the dominant factors for the nuclei of acicular ferrite were analyzed by an transmission electron microscopy (TEM). In addition, mechanical properties of the weld metals were evaluated through tensile tests and charpy impact tests. Mostly the acicular ferrite phase which has high strength and toughness was observed. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 73% acicular ferrite and 27% low temperature phase (bainite, martensite). Toughness was considerably decreased due to the increase of tensile strength (from 600 MPa to 800 MPa). The sizes of inclusions which were observed in both weld metal were
$0.4{\sim}0.8\;{\mu}m$ , it is effective size to form acicular ferrite. -
SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at
$-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at$-10^{\circ}C$ . These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project. -
최근 오일샌드, 극지유전, 심해저자원 등 극한지 자원개발이 활발해짐에 따라 수요가 증대되고 있는 극한지용 내마식 소재는 내마식성과 함께 저온 인성이 요구된다. 철계 합금에서 관찰되는 변형유기 마르텐사이트 상변태는 입자의 충돌에 의한 충격을 흡수하고 소재의 표면을 가공경화시켜 내마식성 향상 및 저온 인성에 기여할 수 있을 것으로 기대되고 있지만 합금조성의 정교한 제어가 필요하기 때문에 오버레이 용접에 적용하기 위해서는 모재와의 희석률을 제어하는 방안이 필요하다. 용접플럭스 설계기술은 용접시 금속이행모드, 용융지 유동거동 등과 같은 용접현상 제어를 통해 오버레이 용접재료의 용접성과 용접부 희석률을 최적화할 수 있는 기술이다. 본 연구에서는 내마식 고인성 오버레이 용접재료의 개발을 위해 Fe-12Cr-1.2C 합금조성을 갖는 메탈코어드 와이어에 대하여 아크안정제로 사용되는 Ca 함유 용접플럭스 첨가가 용착부 형상 및 희석률 변화에 미치는 영향을 조사하였다.
-
합금원소가 다량 첨가된 고합금강, 스테인리스강, Ni기 초내열합금 등은 용접시 혹은 후열처리 동안 열영향부 (HAZ: heat-affected-zone)에서 결정립계를 따라서 액화균열이 종종 발생한다. 이러한 액화균열은 급속한 가열시 HAZ의 결정립계가 국부적으로 용융되어 액상필름을 형성하고, 냉각시 수축으로 인한 인장구속응력에 의해 필름을 따라서 균열이 발생하여 생성된다. HAZ 결정립계 액화는 탄화물, 황화물, 인화물, 보론계 화합물 등이 급가열시 기지와의 반응에 의해 표피 액상을 형성하는 조성적 액화 (constitutional liquation)에 의한 액상의 결정립계 침투로 설명되거나, 결정립계 자체의 용융점을 상당량 낮추는 보론(B), 인(P), 황(S)등의 편석에 의한 국부적 입계 용융으로 주로 연관 지어 해석한다. HAZ 액화균열은 고온 입계균열 현상이므로, 결정립계의 특성에 따라 크게 영향을 받으며 결정립계 character 설계에 의해 액화균열 저항성을 개선시킬 수 있음을 유추할 수 있다. 한편, 본 연구자들은 최근 Ni기 초내열합금에 있어 입계 serration 현상을 새롭게 발견하였으며, 이론적 접근법을 통해 serration을 위한 특별한 열처리 방법을 개발하였다. 형성된 파형입계는 결정학적인 관점에서 조밀 {111} 입계면을 갖도록 분해 (dissociation)되어 낮은 계면에너지를 갖게 됨을 확인하였으며, 입계형상 변화뿐만 아니라 탄화물 특성변화까지 유도하여 크리프 수명을 기존대비 약 40% 정도 향상시킴을 확인하였다. 본 연구에서는 이러한 직선형 입계 대비 'special boundary'로 간주되는 파형입계가 도입될 경우, 보론 편석 및 HAZ 액화거동에 미치는 영향을 고찰하고자 하였다. SIMS (secondary ion mass spectrometry)를 이용하여 열처리 직후 결정립계 보론편석 정도를 비교하였다. 파형입계 시편의 경우, 일반직선형 시편에 비해 결정립계에 보론편석 저항성이 우수함을 확인할 수 있었다. 재현 HAZ 열사이클 시험을 통해 미세조직을 정량적으로 분석하였다. 파형입계 시편 및 일반직선형 시편 모두 최고온도
$1060^{\circ}C$ 이상부터 입계 탄화물이 기지내로 완전 용해되고 입계가 액화되기 시작하였다. 최고온도별로 입계액화비율을 정량적으로 비교한 결과, 파형입계가 직선입계 대비 훨씬 낮음을 확인할 수 있었으며, 때때로 액화된 필름이 입계를 따라 전파되지 않고 부분적으로 단락되어 있음이 관찰되었다. 액화시험 후 투과전자현미경을 이용한 EDS (energy dispersive spectrometry) 분석을 통해 결정립계 액화의 주요원인은 입계$M_{23}C_6$ 의 조성적 액화반응 보다는 보론 편석 (원자 및$M_{23}(CB)_6$ )으로 인한 결정립계 국부용융이 더 유력함을 유추할 수 있었다. 따라서 상기 결과로부터 입계구조가 안정되어 계면에너지가 낮은 파형입계가 보론편석에 대한 저항성이 우수하였으며, 이러한 결과는 액화 저항성에 대응되어 영향을 미침을 알 수 있었다. 게다가 파형입계에 액상 필름이 생성되더라도 낮은 계면에너지에 의해 비롯된 상대적으로 낮은 적심성 (wettability)에 의해 필름이 쉽게 전파되지 않음을 'Smith 입계 wetting 이론'을 이용하여 해석할 수 있었다. -
모바일 정보통신기기를 중심으로 전자패키지의 초소형화, 고집적화를 위해 플립칩 공법의 적용이 증가되고 있는 추세이다. 플립칩 패키징 접합소재로는 솔더, ICA(Isotropic Conductive Adhesive), ACA(Anisotropic Conductive Adhesive), NCA(Non Conductive Adhesive) 등과 같은 다양한 접합소재가 사용되고 있다. 최근에는 언더필을 사용하는 플립칩 공법보다 미세피치 대응성을 위해 NCP를 이용한 플립칩 공법에 대한 요구가 증가되고 있는데, NCP의 상용화를 위해서는 공정성과 함께 신뢰성 확보가 필요하다. 본 연구에서는 LDI(LCD drive IC) 모듈을 위한 COF(Chip-on-Film) 플립칩 패키징용 NCP 포뮬레이션을 개발하고 이를 적용한 COF 패키지의 신뢰성을 조사하였다. 테스트베드는 면적
$1.2{\times}0.9mm$ , 두께$470{\mu}m$ , 접속피치$25{\mu}m$ 의 Au범프가 형성된 플리칩 실리콘다이와 접속패드가 Sn으로 finish된 폴리이미드 재질의 flexible 기판을 사용하였다. NCP는 에폭시 레진과 산무수물계 경화제, 이미다졸계 촉매제를 사용하여 다양하게 포뮬레이션을 하였다. DSC(Differential Scanning Calorimeter), TGA(Thermogravimetric Analysis), DEA(Dielectric Analysis) 등의 열분석장비를 이용하여 NCP의 물성과 경화거동을 확인하였으며, 본딩 후에는 보이드를 평가하고 Peel 강도를 측정하였다. 최적의 공정으로 제작된 COF 패키지에 대한 HTS (High Temperature Stress), TC (Thermal Cycling), PCT (Pressure Cooker Test)등의 신뢰성 시험을 수행한 결과 양산 적용 가능 수준의 신뢰성을 갖는 것을 확인할 수 있었다. -
3D 패키징 기술은 전기소자의 소형화, 고용량화, 저전력화, 높은 신뢰성등의 요구와 함께 그 중요성이 대두대고 있다. 이러한 3D 패키징의 연결방법은 와이어 본딩 또는 플립칩등의 기존의 방법에서 TSV(Through Silicon Via)를 이용하여 적층하는 방법이 주목받고 있다. TSV는 기존의 와이어 본딩과 비교하여 고집적도, 빠른 신호전달, 낮은 전력소비 등의 장점을 가지고 있어 많은 연구가 진행되고 있다. TSV의 세부 공정 중 비아필링(Via filling)기술은 I/O수 증가와 미세피치화에 따른 비아(Via) 직경의 감소 및 종횡비(Via Aspect Ratio)증가로 인해 기존 필링 공정으로는 한계가 있다. 기존의 비아 홀(Via hole)에 금속을 필링하기 위한 방법으로 전기도금법이 많이 사용되고 있으나, 전기도금법은 전기도금액 조성, 첨가제의 종류, 전류밀도, 전류모드 등에 따라 결과물에 큰 차이가 발생되어, 최적공정조건의 도출이 어렵다. 또한 20um이하의 비아직경과 높은 종횡비로 인하여 충진시 void형성등의 문제점이 발생하기도 한다. 본 연구에서는 용융솔더와 진공을 이용하여 비아를 필링시켰다. 이 방법은 관통된 비아가 형성된 웨이퍼 양단에 압력차를 주어, 작은 직경을 갖는 비아 홀의 표면장력을 극복하고, 용융상태의 솔더가 관통된 비아 홀 내부로 필링되는 방법이다. 관통 비아홀이 형성 된 웨이퍼 위에 솔더페이스트를
$250^{\circ}C$ 이상 온도를 가해 용융상태로 만든 후 웨이퍼 하부에 진공을 형성하여 필링하는 방법과 용융솔더를 노즐을 통하여 위쪽으로 유동시켜 그 위에 비아홀이 형성된 웨이퍼를 접촉하고 웨이퍼 상부에 진공을 형성하여 필링하는 방법으로 실험을 각각 실시하였다. 이 때, 웨이퍼 두께는 100um이하이며 홀 직경은 20, 30um, 웨이퍼 상부와 하부의 진공차는 약 0.02~0.08Mpa, 진공 유지시간은 1~3s로 실시하여 최적 조건을 고찰하였다. 각 조건에 따른 필링 후 단면을 전자현미경(FE-SEM)을 통해 관찰하였다. 실험 결과 0.04Mpa 이상에서 1s내의 시간에 모든 비아홀이 기공(Void)없이 완벽하게 필링되는 것을 관찰하였으며 이 결과는 기존의 방법에 비하여 공정시간을 감소시켜 생산성이 대폭 향상 될 수 있는 방법임을 확인하였다. -
무연솔더 재료를 자동차 전장품에 적용하기 위해서는 고온환경에 대한 내구성 및 진동 인자에 대한 영향을 고려해야한다. 특히, ELV(End of Life Vehicles) 지침이 개정됨에 따라 고온용 무연솔더 재료에 대한 재평가가 반드시 필요한 시점이다. 이에 대해 본연구에서는 현재 상용화 된 Pb-free솔더의 재료들 중 총 4종의 Solder을 선정하여 자동차 환경에 부합하는 진동조건하에서 시험해보았다. 그리고 미세조직의 특성, 접합부 형성시의 기계적 강도 및 접합부의 신뢰성을 평가하여 보았다. 각각의 조성에 대한 CHIP type과 QFP type의 실장부품을 준비하였으며, 각각의 조성별로 솔더 페이스트로 Daisy Chain PCB에 접합하여 조성에 따른 비교 데이터를 구축할 수 있었다. 리플로우 공정후 초기의 미세조직 및 전당강도, 저항값을 측정하여 진동시험에 따른 데이터와 비교하였다. 주파수는 10Hz~1,000Hz였으며, 진동가속도는
$29.4m/s^2$ , 20시간의 랜덤진동이 적용되는 동안 챔버내의 온도는 상온으로 유지되었다. 진동시험과 이에 따른 저항측정을 통하여 진동 주파수와 시간에 따른 실장 부품이 받는 진동 영향과 실시간 저항값을 측정하였으며, 이때의 미세조직 비교를 통해 진동특성을 평가하였다. 진동 주파수에 따른 저항값의 변화가 있었으며, 진동전후 전단강도에도 영향을 주었다. QFP type에서는 SAC105가 진동에 가장 취약하였으며, CHIP type에서는 SACX0307이 진동에 가장 취약하였다. -
본 연구에서는 Sn-3.0Ag-0.5Cu (SAC305) 무연솔더의 최적 인쇄성을 위한 PCB 및 마스크설계, 스크린프린팅 공정변수의 최적값을 실험계획법을 통해 평가하였다. 사용된 칩은 가로 0.4mm 세로 0.2mm의 0402 MLCC칩이며, 사용된 시험보드는 OSP 표면처리된 PCB이었다. 인쇄성을 판단하기 위한 공정인자는 금속마스크 두께, 마스크홀 크기, 패드크기 및 모양, 인쇄각도, 인쇄속도, 판분리속도이었다. ANOVA분석을 통해 주인자를 파악하였으며, 인쇄성에 영향을 미치는 주인자는 마스크두께와 인쇄각도임이 확인되었다. 그 후 중심 합성법을 이용하여 인쇄성 최적 조건을 확인하였다. 결과로 나타난 등고선/표면도를 통해, 마스크두께가 작을 때에는 인쇄각도가 작아야 높은 인쇄성을 갖으며, 또한 마스크 두께가 클 경우에는 인쇄각도가 커야 높은 인쇄성을 가짐을 알 수 있었다. 추가실험을 통해서 인쇄성 표면도의 정확도를 확인하였으며, 실험값은 표면도에서 표시된 인쇄성값과 비슷함을 알 수 있었다. 또한, 인쇄성이 낮은 영역과 높은 영역에서 접합강도값을 측정하였으며, 인쇄성이 좋은 영역에서 접합강도도 높음을 알 수 있었다.
-
모바일 정보통신기기를 중심으로 패키지의 초소형화, 고집적화를 위해 플립칩 공법의 적용이 증가되고 있고 있으며 접속피치의 미세화에 따라 솔더 및 언더필을 사용하는 C4 공법보다 ACA(Anisotropic Conductive Adhesive), NCA (Non-conductive Adhesive) 등의 접착제를 이용하는 칩본딩 공법에 대한 요구가 증가하고 있다. 특히, NCA 공법의 경우 산업 현장의 대량생산에 대응하기 위해서는 접착제의 속경화 특성이 요구되어 진다. 일반적으로 접착제의 경화거동은 DSC(Differential Scanning Calorimeter)를 사용해 확인하지만, 수초 이내에 경화되는 접착제의 경우는 적용되기 어렵다. 본 연구에서는 이러한 전자패키지용 접착제의 속경화 거동을 효과적으로 평가할 수 있는 방법을 조사 하였다. 실험에서 사용된 접착제는 에폭시계 레진 기반에 이미다졸계 경화제를 사용한 기본적인 포뮬레이션을 사용하였고, 경화시간은 160^{\circ}C에서 1분 이내에 경화되는 특성을 가지고 있다. 경화 거동을 확인하기 위해서 isothermal DSC와 DEA(Dielectric Analysis)의 두가지 방법을 사용해 비교하였다. 두 실험 방법 모두
$160^{\circ}C$ 를 유지하며 경화 거동을 확인하였고, DoC(Degree of Cure)의 측정오차를 비교 분석하였다. DEA는 이온 모빌리티 변화에 따른 유전손실율을 측정하는 방법으로 80~90% 이후의 경화도는 측정되지 않았지만, 수초 이내에 경화되는 속경화 특성을 평가하기에 적합한 것으로 확인되었다. -
저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점:
$138^{\circ}C$ ) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여$10^{-2}$ ,$10^{-3}$ ,$10^{-4}\;s^{-1}$ 의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나,$10^{-2}\;s^{-1}$ 의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커$10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나,$10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는$\beta$ -Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다. -
전자제품의 소형화, 경량화, 고집적화가 심화됨에 따라 전자제품을 구성하는 회로의 미세화 또한 요구되고 있다. 이러한 요구는 경성회로기판 (rigid printed circuit board, RPCB) 뿐만 아니라 연성회로기판 (flexible printed circuit board, FPCB) 에도 적용되고 있으며 이에 대한 많은 연구 또한 이루어지고 있다. 연성회로기판은 일반적으로 절연층을 이루는 폴리이미드 (polyimide, PI)와 전도층을 이루는 구리로 이루어져 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 우수한 기계적 특성, 연속공정이 가능한 장점을 가지고 있으나, 고온다습한 환경하에서 높은 흡습성으로 인해 전도층을 이루는 구리와의 접합특성이 저하되는 단점 또한 가지고 있다. 또한 전도층을 이루는 구리는 고온다습한 환경하에서 산화 발생이 용이하기 때문에 접합특성의 감소를 야기할 수 있다. 따라서 본 연구에서는 고온다습한 조건하에서 sputtering and plating 공정을 통해 순수 Cr seed layer를 가지는 연성회로기판의 seed layer의 두께와 시효시간의 변화로 인해 발생하는 접합특성의 변화를 관찰하고 분석하였다. 본 연구에서는 두께
$25{\mu}m$ 의 일본 Kadena사(社)에서 제작된 폴리이미드 상에 sputtering 공정을 통해 순수 Cr으로 이루어진 각각 두께 100, 200,$300{\AA}$ 의 seed layer를 형성한 후 전해도금법을 이용, 두께$8{\mu}m$ 의 구리 전도층을 형성한 시료를 사용하였다. 제작된 시료는 고온다습한 환경하에서의 접합 특성의 변화를 관찰하기 위하여$85^{\circ}C$ /85%RH 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효처리 한 후, Interconnections Packaging Circuitry (IPC) 규격에 의거하여 접합강도를 측정하였다. 시료의 전도층은 폭 3.2mm 길이 230mm의 패턴을 가지도록, 절연층은 폭 10mm, 길이 230mm으로 구성되었으며 이를 50.8mm/min의 박리 속도로 각 시편당 8회의$90^{\circ}$ peel test를 실시하였다. 파면의 형상과 화학적 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 관찰 분석하였다. -
전자 패키징은 미세화, 경량화, 저가화를 지향하고 신뢰성의 향상을 위해 발전해 왔다. 이러한 경향은 전자부품 자체의 성능 향상 뿐 아니라 전자부품을 장착, 고정할 수 있게 하는 인쇄회로 기판(PCB : Printed Circuit Board)의 성능에 많은 관심을 가지게 되었다. 전기적 신호의 손실을 줄이기 위해 전기, 전자 산업체에서는 가볍고 굴곡성이 우수한 연성인쇄회로기판(FPCB : Flexible PCB)과 가격이 싸고 신뢰성이 입증된 경성인쇄회로기판(RPCB : Rigid PCB)이 그 대상이다. 본 논문에서는 이 PCB중에서도 RPCB와 FPCB간의 열압착 방식으로 접합 시 전극간의 접합 양상을 보았다. 이 열압착 방식은 기존에 PCB를 접합하는데 사용하고 있는 connector를 이용한 체결법을 대체하는 기술로써 솔더를 중간층(interlayer)로 이용하여 열과 압력으로 접합하는 방식이다. 이 방식을 connector를 사용하는 방식에 비해 그 부피가 작고 I/O개수에 크게 영향 받지 않으며 자동화 공정이 쉬운 장점을 가지고 있다. 접합의 대상 중 RPCB의 경우는 무전해 니켈 금도금(ENIG : Electroless Nickle Immersion Gold)로 제작하였으며 FPCB의 경우는 ENIG와 유기보호피막(OSP : Organic solderability preservation) 처리하였다. 실험에 사용한 PCB는
$300\;{\mu}m$ pitch의 미세피치이며 솔더의 조성은 Sn-3.0Ag-0.5Cu (in wt%)과 Sn-3.0Ag (in wt%)를 사용하였다. 접합 온도와 접합 시간 그리고 접합 압력에 따라 최적의 접합 조건을 도출하였다. 접합 강도는$90^{\circ}$ Peel Test를 통해서 측정하였으며 접합면 및 파괴면은 SEM과 EDS를 통하여 분석하였다. -
표면실장 공법을 통해 CSP 패키지를 보드에 실장 하는데 있어 무연솔더 접합부의 신뢰성에 영향을 미치는 인자 중 가장 중요한 것은 접합부에 형성되는 IMC (Intermetallic compound, 금속간화합물)인 것으로 알려져 있다. 접합부의 칩 부분에는 솔더와 칩의 UBM (Under bump metalization)이 접합하여 IMC가 형성되나, 보드 부분에는 솔더와 보드의 UBM 뿐만 아니라 그 사이에 솔더 페이스트가 함께 접합되어 IMC가 형성된다. 본 연구에서는 패키지의 신뢰성 연구를 위해 솔더 페이스트의 유무 및 두께에 따른 무연 솔더 접합부의 미세조직의 변화를 분석하였다. 본 실험에서는 Sn-3.0(Wt.%)Ag-0.5Cu 조성과 본 연구진에 의해 개발된 Sn-Ag-Cu-In 조성의 직경
$450{\mu}m$ 솔더 볼을 사용하였으며, 솔더 페이스트는 상용 Sn-3.0Ag-0.5Cu (ALPHA OM-325)를 사용하였다. 칩은 ENIG (Electroless nickel immersion gold) finish pad가 형성된 CSP (Chip scale package)를, 보드는 OSP (Organic solderability preservative)/Cu finish pad가 형성된 것을 사용하였다. 실험 방법은 보드를 솔더 페이스트 없이 플라즈마 처리 한 것, 솔더 페이스트를$30{\mu}m$ 두께로 인쇄한 것,$120{\mu}m$ 의 두께로 인쇄한 것, 이렇게 3가지 조건으로 준비한 후, 솔더 볼이 bumping된 칩을 mounting하여,$242^{\circ}C$ 의 peak 온도 조건의 oven(1809UL, Heller)에서 reflow를 실시하여 패키지를 형성하였다. 이후 시편은 정밀 연마한 후, OM(Optical Microscopic)과 SEM(scanning electron microscope) 및 EDS(energy dispersive spectroscope)를 사용하여 솔더 접합부 IMC의 미세조직을 관찰, 분석하였다. -
현재 가동 중인 몇몇 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부는 일차수응력부식균열(PWSCC : Primary Stress Corrosion Cracking) 발생의 세가지 조건(민감 재질, 부식 환경, 인장응력)을 동시에 충족하고 있다. 즉, 이종금속 용접부는 PWSCC에 민감한 재질인 Alloy 600 계열 합금으로 제작 또는 용접되어 있으며 고온 수화학 부식 환경 하에 놓여있다. 아울러 오스테나이트 스테인리스 강의 예민화 예방을 위한 용접 후열처리 미실시로 높은 인장 용접 잔류응력이 작용하고 있다. 이러한 이종금속 용접부의 특성상 PWSCC가 발생할 잠재성이 있을 뿐만 아니라 국내외적으로 Alloy 600 계열 합금으로 제작 및 용접된 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부에 실제 PWSCC가 발생된 사례들이 다수 보고되고 있다. 운전 환경 및 재질 변화 없이 PWSCC 발생을 예방하기 위해서는 인장 잔류응력을 이완시켜 낮은 인장 또는 압축 응력화하여야 한다. 이러한 인장 잔류응력 이완방법들로는 PWOL(Pre-emptive Weld Overlay), 레이저 피닝(Laser Peening), MSIP(Mechanical Stress Improvement Process), 워터 제트 피닝(Water Jet Peening), IHSI(Induction Heating Stress Improvement) 방법들이 있는데 공정 시간이 짧고 열 에너지 원이 필요 없으며 전체적인 소성 변형을 야기시키지 않는 레이저 피닝을 본 연구의 대상 방법으로 한다. 본 연구에서는 동적 유한요소 해석을 통해 용접 잔류응력을 이완시키는 레이저 피닝의 효과를 검증하고 용접 잔류응력에 미치는 레이저 피닝 변수의 영향을 고찰하고자 한다. 내부 보수용접이 수행된 경수로 원전 가압기 노즐 이종금속 용접부에 레이저 피닝을 적용한 경우에 대해 상용 유한요소 해석 프로그램인 ABAQUS를 이용하여 동적 유한요소해석을 수행한 결과, 고온 수화학 일차수와 접하는 Alloy 600 계열 합금 내면에서의 인장 잔류응력이 상당히 이완됨을 확인하였다. 또한, 최대충격 압력이 증가할수록, 충격압력 지속시간이 증가할수록, 레이저 스팟 직경이 증가할수록 내표면 인장 잔류응력 이완 정도는 감소하나 이완되는 영역의 깊이는 증가함을 알 수 있다. 또한, 레이저 피닝 방향이 잔류응력 이완에 미치는 영향은 미미함을 알 수 있다.
-
환경 규제 및 배출가스 규제에 의하여 차량 경량화를 위해 점차적으로 Al합금의 차체 및 부품적용 비율이 점차 확대되고 있다. 이에 따라 알루미늄의 레이저 용접 시 출력, 초점거리, 용접 속도 등 공정 변수의 상관관계와 용접 결함 현상에 의한 관심이 집중된 연구가 많이 발표되었으며, 알루미늄 5000계열의 경우 박판 용접 시 기공, 균열 등 과 같은 결함 현상을 방지하기 위하여, Twin spot laser, Laser-TIG hybrid 등과 같은 공법 적용을 제안되었다. 본 연구에서는 Yb:YAG laser welding 시 Mg 함량이 높은 AA5J32을 소재를 이용하여 박판 겹치기 용접 시 Back side spiking 결함 방지를 위한 레이저 빔 출력 파형을 설계하여 실험을 수행하였다. 또한 파형의 특성에 따라 나타나는 겹치기 용접부의 기계적 특성과 기공에 대해 알아 보고자 하였다.
-
Fiber laser is a heat source which is introduced recently, and so has a little researched data compare with conventional laser processing. Moreover basic data for welding monitoring are also insufficient. Therefore, in this study, the change of signal with measuring position and angle of plasma emission signals were analysed as a basic experiment for real time monitoring in fiber laser welding. As a result, the signals measured from the side, front and rear had the biggest intensity at
$60^{\circ}$ , and frequency peak to reflect the behavior of keyhole and swing of plasma by shield gas was detected at$45{\sim}60^{\circ}$ . However, both intensity of signal and the result of FFT for monitoring were satisfied at the angle of$45^{\circ}$ from the side. -
자동차 산업에서 차체를 성형하는 프레스 금형 산업은 꾸준히 증가하고 있는 자동차 생산대수와 함께 성장해가고 있으며, 자동차 산업의 국제 경쟁이 심해지고 소비자들의 요구가 다양해짐에 따라 신제품 개발주기에 발맞추어 금형의 제작에도 단납기 및 비용절감을 위한 노력과 제품의 품질 향상을 위해 신기술, 신공법이 적용되고 있다. 한편 자동차 차체를 제작하는 프레스 금형가공은 박판소재를 원하는 형상으로 제작하는 공정으로써, 프레스의 상 하 운동을 이용하여 강판을 성형한다. 이러한 금형의 형태는 곧 자동차 차체 제품의 형태를 완성하므로 제품을 성형하는 도중에 금형과 소재의 마찰에 의해 금형의 마모나 마멸이 발생하여 제품의 품질을 저하시킬 우려가 있다. 따라서 금형의 내마모성 및 수명을 향상시키기 위한 방안들 중 표면경화처리가 행해지고 있으며, 그중 공정 속도가 빠르고 국부적인 열처리가 가능한 레이저 표면처리 방법이 많은 관심을 받고 있다. 본 연구에서는 이러한 금형의 성질을 향상시키기 위해 고출력 다이오드 레이저를 이용하여 프레스 금형공정 중 드로잉(drawing) 공정에의 적용을 위한 표면경화처리를 실시하였다. 최대출력 4.0kW의 다이오드 레이저를 사용하였으며, 6축 외팔보 로봇에 열처리용 광학계를 장착하여 열처리를 실시하였다. 또한 광학계 부근에는 적외선 온도센서가 부착되어있어 열처리시 시험편의 표면온도를 실시간으로 측정할 수 있도록 구성되어져있다. 시험편은 금형재료용 구상흑연 주철인 FCD550 소재를 사용하였으며, 공정변수에 따른 열처리 특성을 파악하고, 그 경화특성을 평가하였다. 실험 결과, FCD550 소재의 표면 열처리시 레이저 출력 3.5kW, 빔 이송속도 3mm/sec에서 최적의 열처리 특성을 나타내었으며, 이때의 최고 경도는 930Hv을 나타내며 모재에 비해 경도가 3배 정도 상승하는 우수한 경화특성을 보였다.
-
Magnesium alloy is being used for structural material since it has high specific strength. Tubular shape was effective way for enhanced structural design. To manufacture the tube, it is necessary to weld the butted joint of both tubular formed sides. But the magnesium alloy was hardly welded with conventional welding processes. The laser welding was effective way to joint magnesium alloys because it had high weld strength and productivity compare with other welding processes. In this study, magnesium alloy sheets was formed at elevated temperature to tubular shape and welded with laser. Consequently, the magnesium alloy tube was making successful with warm forming and laser welding and bicycle frame was making with it.
-
최근 자동차에서 경량화의 방안으로써 높은 강성을 요구하는 고장력강 사용이 증대 되고 있다. 그러나 고장력강은 저항 점용접 시 일반 강에 비해 높은 전류를 요구하며 계면파단 및 expulsion 발생이 용이하기 때문에 가용 전류 구간이 좁은 특성을 가진다. 많은 연구자들이 hold time, tempering 등의 process를 이용하여 고장력강의 저항 점용접성을 개선하고자 하였으나 생산 공정라인에 적용하기는 어려운 실정이다. 본 연구에서는 용접 공정 변수의 변화에 따른 용접성과 전극 형상 변화을 통한 고장력강 점 용접성 향상에 대한 연구를 실시 하였다. 고장력강의 점 용접성 비교하기 위해 표준 전극(S1)과 인위적으로 가공한 전극(M1)을 사용하였으며, 실험에 사용된 판재는 두께 1.4mm의 DP590이며, 그 결과 표준전극(S1) 보다 가공 전극(M1)의 가용 전류 구간이 0.5kA 정도 넓은 것으로 확인 되었다. 두 전극을 사용한 점용접 시험편들의 인장전단강도를 비교 해보면 표준전극(S1)을 적용한 점용접 시 인장전단강도는 KS B 0850 기준에 만족하나 계면 파단이 발생 하였다. 가공 전극(M1)을 적용한 점용접 시 인장전단강도는 규격 기준에 만족하나 버튼 파단이 발생 하였다. 두 전극을 적용한 점용접부 형상 및 용접부 온도 분포에대해 저항점용접 시뮬레이션 프로그램(SORPAS)을 이용하여 실험 결과 값과 비교 분석하였고 파단모드의 변화에 대한 원인 분석을 도출 하였다.
-
온실가스와 같은 환경오염으로 인한 규제로 인해 경량화 소재인 알루미늄의 차체 적용이 늘어가는 추세이다. 하지만 알루미늄의 낮은 용접성으로 인하여 기계적 접합법 등이 알루미늄의 접합에 사용되고 있으나 낮은 접합강도 등의 문제가 발생하고 있다. 본 논문에서는 스폿용접 시뮬레이션 프로그램인 SORPAS를 이용하여 건전한 용접부를 얻을 수 있는 알루미늄 합금 용접 조건을 도출하였고 실제 델타스폿 용접기를 이용하여 도출된 실험 결과와 비교 분석하였다. 이를 위하여 전극의 형태에 따른 용접성의 변화를 분석하였고, 전류 및 가압력 프로파일에 따른 용접성의 특징을 관찰하였다. 그리고 각각의 용접 변수들의 변화에 따른 용접 특성 평가 실험을 통하여 각 변수들의 특성을 파악하였고, 용접강도가 높고 용접부에 결함이 존재하지 않는 용접성을 가진 변수조건을 구하였다. 최종적으로 변수 특성 평가 실험의 결과를 바탕으로 Al 6032와 Al 5454에 대하여 넓은 적정용접 영역을 가진 로브 곡선을 도출하였다. 본 연구는 2009년도 서울시 산학연 협력사업(과제번호 10848) 및 BK21의 연구비 지원을 받아 수행 하였음.
-
최근 자동차 산업은 고효율 및 친환경이라는 전세계적인 이슈에 따라 고연비의 자동차 개발에 총력을 다하고 있다. 그러므로 다양한 고강도 강 및 경량 금속이 자동차의 차체에 적용되고 있다. 특히 철강재료에 있어서 기존의 저 탄소강에서 다양한 기능을 갖은 고강도 강으로 그 종류가 다양화되고 있으며 이에 따라 저항 점용접을 이용한 차체의 접합은 점점 이종의 강판을 접합하는 비율이 점차로 늘어나고 있다. 이와 같이 강판의 종류가 다양해짐에 따라 수많은 이종 강판에 대한 조합이 생기고 있으며, 이를 모두 실험을 통해 최적 용접조건을 찾기에는 많은 시간과 노력이 투자되어야 된다. 그러나 시뮬레이션 기법으로 이종 접합의 초기 용접조건에 대한 정보를 얻는다면, 최소의 실험을 통해 좀 더 손쉽게 최적의 용접조건을 도출할 수 있다. 그러므로 본 연구에서는 실제 자동차에 많이 쓰이는 강판인 EDDQ급 도금강판 0.7t와 440R 급 1.2t 및 DP 590 1.0t의 3종류의 이종 강판에 대한 점 용접특성을 저항 점용접 전문 소프트웨어인 SORPAS를 이용하여 시뮬레이션하고 분석하였다. 시뮬레이션은 겹치기 순서에 따라 용접 전류, 가압력, 용접 시간을 변수로 하여 각각의 겹침 순서에 대한 2개의 용접 점에 대한 너겟의 크기를 분석하였으며 로브 곡선을 얻을 수 있었다. 이를 통해 3겹의 겹치기 순서에 따른 용접 특성을 비교할 수 있었으며, 이것을 실제 생산라인의 자동차 차체의 조립 순서 결정에 있어서 응용함으로써 용접 특성을 고려한 차체 조립에 적용이 가능할 것으로 사료된다.