기존의 링크교통량으로부터 OD추정모형은 기존 OD에 대한 추정의 종속성이 커, 기존 OD나 관측링크교통량의 오차에 따라 추정결과가 일관적이지 않은 문제점을 가지고 있다. 또한 관측링크교통량의 정확도가 중요함에도 불구하고 차종구분 없이 링크교통량을 이용하여 정보의 손실을 초래하였고 결과적으로 OD 추정력을 저하시켰다. 그렇지만 다차종 링크교통량으로부터 다차종 OD를 구하는 연구는 거의 없었으며, 그 추정결과가 단일차종에 대한 추정결과와 어떻게 다른지에 대한 연구도 전무하였다. 본 연구의 목적은 기존의 OD 추정모형이 기존 OD에 대해 종속성을 가지며 차종구분 없이 모형을 구성함으로써 추정력의 저하를 초래하였음을 밝히고, 이에 대한 대안으로 종속성 문제를 완화하고 차종구분을 통해 OD 추정모형의 추정력을 증진시키자 하는 것이다. 이를 위해 유전알고리즘을 이용한 다차종 OD행렬 추정모형(GAMUC)을 구축하고, 이를 기존의 바이레벨 모형의 IEA 알고리즘 및 다차종으로 확장한 모형(IEAMUC)과 게임이론측면에서 검토하였으며, 사례네트워크에 대해 각 기법을 비교하였다. 본 연구는 유전알고리즘을 이용한 OD 추정기법을 축도로에 적용한 임용택 등(2000)과 이를 네트워크로 확장한 백승걸 등(2000)의 연구를 다차종으로 확장한 것이다. 사례분석 결과 기존 OD의 오차변화나 관측링크교통량의 오차변화 등에 있어 GAMUC가 IEA나 IEAMUC보다 추정력이 양호하여, 실제 OD를 알 수 없는 도시부 네트워크에서 GAMUC 모형의 적용력이 우수하였다. 또한 차종을 구분하지 않은 기존 모형은 실제 OD와는 전혀 다른 OD 구조를 도출할 수 있음을 보였으며, 단일 차종을 여러 차종으로 구분하여 OD를 추정하는 것이 더 양호한 추정력을 확보하는 것으로 나타났다.