The Bulletin of The Korean Astronomical Society (천문학회보)
The Korean Astronomical Society (KAS)
- Semi Annual
- /
- 1226-2692(pISSN)
Domain
- Earth Science(Earth/Atmosphere/Marine/Astronomy) > Astronomy
Volume 39 Issue 1
-
The past three decades have witnessed a renaissance in the field of extragalactic globular clusters (GCs). GC systems have now been investigated in galaxies ranging from dwarfs to giants and spanning all the morphological types. Detailed studies of GCs provide strong constraints on galaxy formation that can be obtained in the near-field. In this talk I will review some of the pivotal studies performed with the HST and large ground-based telescopes and state-of-the-art simulations. Also, I will attempt to introduce my new solution to a long-standing puzzle in this field----the origin of GC bimodality in color. I will show that the theory gives a simple, cohesive explanation for the key observations of extragalactic GCs. The implication of the results will be discussed in the context of formation of GC systems and their parent galaxies.
-
Type Ia supernovae (SNe Ia) have provided the first evidence that the Universe is accelerating. Nevertheless, the nature of the progenitors has remained a mystery, indeed controversial. In this talk I will first summarize the main supernova explosion mechanisms and the observational classification of supernovae. I will show how SNe Ia can be used as standardizable distance candles and discuss possible limitations of the method. In the main part of the talk I will discuss the main progenitor models that have been proposed, emphasizing the problems and advantages of each, and how they can be observationally tested. I will then present some relatively recent discoveries by the Palomar Transient Factory and most recently in M82 that directly constrain the progenitors in a few cases.
-
A fundamental problem in space physics is to explain the origin of energetic charged particles in space close to the Earth and the significant temporal variations of their flux. The particles are primarily electrons and protons although energetic heavy ions such as O+ are sometimes non-negligible. By "energetic" we mean a rather broad energy range of particles from a few tens of keV to well above MeV. Drastic variations of the particle fluxes (by >3 orders of magnitude) occur over both a short time scale like a few minutes and a long time scale like the 11-year sunspot cycle. In this talk I will focus on relativistic energy electrons (~MeV) trapped within the Earth's magnetosphere. They are a primary element of the space weather since they can cause damage to satellites, so often called "killer electrons". Considering that the source particles in both the solar wind and the ionosphere are relatively cold (~eV), the quasi-permanent existence of these very energetic particles close to the Earth has been a surprise to space physicists for decades. Complex electromagnetic processes such as wave-particle interactions within the magnetosphere are believed to play a major role in generating these killer electrons. While detailed physics remains an active research area, for this lecture I will introduce a synthesized picture of how solar activities are related to wave-particle interaction physics inside the magnetosphere. This can be applied to other astrophysical systems.
-
I will review the generation of B-mode polarization from gravitational waves and their implications for inflation in light of the recent detection by BICEP2.
-
I provide an observer's view on the recent BICEP2 results. I begin with giving background information on the instrument and CMB polarization measurements. Based on a survey of the current debate, I will provide an overview on the conclusions to be drawn from the BICEP2 measurements which are actually mixed: on the hand, there is no doubt that the results are very important and exciting; on the other hand, it is probably premature to conclude that the observed signal is indeed cosmological.
-
We investigate the constraints on the matter density
${\Omega}m$ and the cosmological constant${\Omega}{\Lambda}$ using the gravitational lensed QSO (Quasi Stellar Object) systems from the Sloan Digital Sky Survey (SDSS) by analyzing the distribution of image separation. The main sample consists of 16 QSO lens systems with measured source and lens redshifts. We use a lensing probability that is simply defined by the gaussian distribution. We perform the curvature test and the constraints on the cosmological parameters as the statistical tests. The statistical tests have considered well-defined selection effects and adopt parameter of velocity dispersion function. We also applied the same analysis to Monte-Carlo generated mock gravitational lens samples to assess the accuracy and limit of our approach. As the results of these statistical tests, we find that only the excessively positively curved universe (${\Omega}m+{\Omega}{\Lambda}$ > 1) are rejected at 95% confidence level. However, if the informations of the galaxy as play a lens are measured accurately, we confirm that the gravitational lensing statistics would be the most powerful tool. -
Han, Junghwan;Lee, Bangwon;Jung, Sang-Eun;Ha, Ji-Sung;Jang, Bi-Ho;Han, Inwoo;Hong, S.S.;Park, Young-Sun 55
국립 고흥 청소년 우주 체험 센터는 연구와 학생들의 교육을 위해 12GHz 전파 간섭계를 개발했다. 저비용으로 제작하기 위하여 상용 제품들을 주로 사용하였고, 해변 가에 위치한 센터 특성상 강한 바다 바람과 부식에 견디도록 제작하였다. 고흥 간섭계는 직경 1.8m의 off-axis parabola 안테나 3대로 이루어져 있으며, 각 안테나 사이의 기선길이는 4, 19, 20m로, 해상도가 최대 약 4'인 영상을 얻을 수 있다. 수신기는 중심 주파수가 12.177GHz, 대역폭이 10MHz이며 메탄올 천이선과 연속파를 관측할 수 있는 시스템이다. 시스템온도는 100-200K로 추정된다. 각 수신기에서 나오는 신호는 digitizer로 읽어 들이며, 병렬 처리 프로그램으로 software correlation을 수행한다. 태양, 달, Crab Nebula, 그리고 Cassiopeia A 등을 관측하여 프린지를 검출하는데 성공하였다. 가시함수를 구하기 위한 프린지 fitting model의 파라미터들은 기선벡터의 측량과 점전파원 관측을 통하여 정밀하게 측정하였다. 태양에 대한 영상관측결과를 논의하고자 한다. -
FU Orionis type object is a category of low mass pre-main sequence star which displays optical outburst caused by accreting material at rapid rates from their surrounding disks in a few months. V1057 Cyg was about 16 mag. In late 1969, however, it rapidly brightened more than 5 mag and classified as a FU Orionis type object. After the outburst the brightness began to weaken monotonously and in 1990's magnitude decreased 13.0 mag. We carried out photometric observations of V1057 Cyg in V R I bands from 2013 November 7 to 20 with the 76 cm Ritchey-Chretien telescope at Kyung Hee Astronomical Observatory (KHAO). These result can display the recent brightness change of V1057Cyg during observation period. We also discuss possibilities of using an on-campus telescope for astronomical research works.
-
Several geometrical models (e.g., cone and flux rope models) have been suggested to infer 3-D parameters of CMEs using multi-view observations (STEREO/SECCHI) and single-view observations (SOHO/LASCO). To prepare for when only single view observations are available, we have made a test whether the cone model parameters from single-view observations are consistent with those from multi-view ones. For this test, we select 35 CMEs which are identified as CMEs, whose angular widths are larger than 180 degrees, by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 July when two spacecraft were separated by
$90{\pm}10$ degrees. In this study, we compare 3-D parameters of these CMEs from three different methods: (1) a triangulation method using the STEREO/SECCHI and SOHO/LASCO data, (2) a Graduated Cylindrical Shell (GCS) flux rope model using the STEREO/SECCHI data, and (3) an ice cream cone model using the SOHO/LASCO data. The parameters used for comparison are radial velocities, angular widths and source location (angle${\gamma}$ between the propagation direction and the plan of the sky). We find that the radial velocities and the${\gamma}$ -values from three methods are well correlated with one another (CC > 0.8). However, angular widths from the three methods are somewhat different. The correlation coefficients are relatively not good (CC > 0.4). We also find that the correlation coefficients between the locations from the three methods and the active region locations are larger than 0.9, implying that most of the CMEs are radially ejected. -
Dynamics of a globular cluster (GC) is dominated by behaviors of high-mass components such as neutron stars or black holes (BHs). Massive components in a cluster are segregated into the cluster core and some of them are ejected by dynamical interactions. In this study, we perform N-body simulations of GCs adapting two BH mass components,
$10M_{\odot}$ and$20M_{\odot}$ . Previous studies which mostly assume single-mass BHs suggested a rapid collapsing and escaping of BHs. A cluster with a two-component BH mass spectrum, however, retains a large fraction of$10M_{\odot}$ BHs longer. In addition to their roles in cluster dynamics, massive components in binaries are one of important sources of gravitational waves (GWs). We investigate properties of BH binaries escaped from the cluster and discuss their implications for GW detection. -
조선 전기 세종(世宗, 1418-1450)에 의해 천체관측기기와 천문역법을 개발하는 사업이 있었다. 이 때 조선의 천문대인 간의대가 건설되었고, 더불어 소간의, 일성정시의, 현주일구, 천평일구, 정남일구, 앙부일구 등 다수의 소형화된 천문의기가 개발되었다. 이보다 앞서 중국 원(元)왕조의 최신 관측기기였던 간의, 규표, 혼천의, 혼상 등을 제작하였는데, 이 과정에서 습득한 기술적 경험을 바탕으로 소형화된 천문의기 새롭게 발전시킨 것으로 보인다. 당시 천문의기를 구성하는 것에는 천구의 도수를 눈금으로 새긴 원형의 환(環)이나 구형의 혼(渾)이 있었다. 조선에서는 시헌력을 도입하기 전까지 천구의 도수(주천도수)를 365.25 등분하였고, 하루 12시진을 백각으로 나누었으며, 이를 각각 주천도분환과 백각환에 눈금을 새기었다. 당시에는 환의 둘레에 주천도수와 백각을 새기는 기술적인 어려움이 있었다. 이러한 제작 상의 문제를 해결하는 방법으로, 본 연구에서는 도수나 시각의 각거리를 일정한 길이의 단위로 설정하여 원주를 등분하였을 것으로 가정하였다. 즉 조선의 소형화된 천문의기는 주천도의 1도나 백각의 1각을 일정한 길이의 단위인 푼이나 치의 정수배로 하여 환의 둘레에 주천도수와 백각의 눈금을 새겼을 것으로 추정하였다. 만일 주천도의 1도 각거리를 1푼으로, 백각의 1각 각거리를 1푼으로 하는 표준 변환을 적용하면, 각각 환의 지름이 1.16치, 0.32치가 된다. 이러한 방법이 현존하는 일성정시의나 소간의의 세 종류의 환과 현주일구의 백각환의 특성과 잘 일치함을 보이고 있다. 이 연구의 결과는 향후 소형화된 천문의기의 구조적인 재원을 연구할 때나 출처가 불분명한 의기의 크기를 이해하는데 주요한 역할을 할 수 있을 것으로 기대한다.
-
Astronomical observations strongly suggest that the expansion rate of our universe is currently under acceleration. The nature of the so-called dark energy causing the acceleration is unknown, and it is one of the fundamental mysteries in the present day theoretical cosmology. Here we briefly review the current state of cosmic dark energy research in both theoretical and observational sides. Constraints on dynamical dark energy models (e.g., w-fluid, quintessence, and modified gravity) with recent observational data from type Ia supernovae, cosmic microwave background radiation, and large-scale structures in the universe indicate a preferred direction toward the simplest
${\Lambda}$ CDM world model. We also discuss some issues regarding the early dark energy model and the spherical collapse of matter in the presence of dark energy. -
We present a prediction for 21cm differential brightness temperature (dTb) from a set of strongly clustered sources of Population III and II objects at high redshift, from a suite of numerical simulations of their formation and radiative processes. These objects are located inside a highly biased density environment ("Rarepeak"), which is a rare, high-density peak which extends to ~7 comoving Mpcs. We study the impact on the resulting 21 cm signal from their ultraviolet and X-ray properties. The boost of emission (dTb>0) by high-density environment, moderate leakage of X-ray photons, and strong absorption due to Lyman-alpha pumping contrive to make Rarepeak a discernible, spatially-extended (sky angle~10') object around z~15, which is found to be detectable as a single object by Square Kilometre Array (SKA) with integration time of ~[600-2000] hours. We also examine detectability of many such peaks through SKA precursors.
-
최근에 이슈가 되고 있는 먼거리 우주에서 잰 우주 인자의 값과 근거리 우주에서 잰 우주 인자의 값이 차이가 나는 것을 설명할 수 있는 새로운 이론을 제시한다.
-
SUSSING MERGER TREES : THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODELHalo merger trees are essential backbones of semi-analytic models for galaxy formation and evolution. Recent studies have pointed out that extracting merger trees from numerical simulations of structure formation is non-trivial; different algorithm can give differing merger histories. Thus they should be carefully understood before being used as input for models of galaxy formation. As one of the projects proposed in the SUSSING MERGER TREES Workshop, we investigate the impact of different halo merger trees on a semi-analytic model. We find that the z = 0 global galaxy properties in our model show differences between trees when using a common parameter set, but that these differences are not very significant. However, the star formation history of the Universe and the properties of satellite galaxies can show marked differences between trees with different methods for constructing a tree. Calibrating the SAM for each tree individually to the empirical data can reduce the discrepancies between the z = 0 global galaxy properties, however this is at cost of increasing the differences in evolutionary histories of galaxies. Furthermore, the underlying physics implied can vary, resulting in key quantities such as the supernova feedback efficiency differing by factors of 2. Such a change alters the regimes where star formation is primarily suppressed by supernovae. Therefore, halo merger trees extracted from a common halo catalogue using different, but reliable, algorithms can result in a difference in the semi-analytic model, however, given the enormous uncertainties in galaxy formation physics, these are not necessarily significant.
-
Sloan Digital Sky Survey (SDSS)는 2000년 관측자료를 수집한 이후로 현재까지 하늘의 35%에 포함된 9억개 가량의 천체들의 측광관측과 그 중 240만여개의 분광관측을 수행 하였다. 이로서 우리로부터 수백 Mpc이나 떨어진 은하들의 분포까지도 정확히 그 모습을 드러내게 되었고 180만여개에 이르는 은하들의 다양한 물리량들과 거리에 관한 막대한 정보를 얻게 되었다. 그 결과 은하들의 성질들과 주변 환경간의 다양한 관계를 매우 정확히 측정할 수 있게 되었고 이 노력을 통하여 은하의 형성을 이해하는 데 매우 큰 진보와 발전을 가져왔다. 본 강연에서는 이와 관련하여 본연구자가 연구한 그간의 결과들을 소개하고자한다.
-
Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Oh, Seulhee;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon;Sheen, Yun-Kyeong 35.2
Today, it is widely accepted that dense environments tend to accelerate galaxy evolution. However, according to recent studies, the environments where galaxies evolve most considerably are galaxy groups rather than galaxy clusters. In an isolated group, the central host galaxy and its satellites co-evolve and interact with each other; as a result, they tend to have similar properties. Such conformity between host and satellite galaxies are relatively well known in galaxy groups, but it is hardly studied what happens after such galaxy groups merge into a galaxy cluster. Recently, J. H. Lee et al. (2014) have found that the colors of bright galaxies in WHL J085910.0+294957, a galaxy cluster at z = 0.3, show a measurable correlation with the mean colors of faint companions around them, which may be the vestige of infallen groups in the cluster. As a follow-up study, we explore more galaxy clusters, Abell 3659 and Abell 1146 at z ~ 0.1, using deep images obtained from the Magellan (Baade) 6.5-m telescope. Cluster members are selected based on the distributions of color, size and concentration along magnitude and spatial distribution. We investigate the dependence of the mean colors of faint companion galaxies on local environments and the properties of adjacent bright galaxies. After comparing the results with those in J. H. Lee et al. (2014), we discuss the origin of the relationships between bright galaxies and their faint companions based on their dependence on cluster properties. -
The correlation between mass of Type Ia Supernova (SN Ia) host galaxies and Hubble residual is now well-established. The origin of this relation, however, is yet to be understood. We have used low-resolution spectra of early-type hosts from YONSEI (YOnsei Nearby Supernovae Evolution Investigation) project to measure central velocity dispersion and Lick/IDS absorption indices. By using the Evolutionary Population Synthesis (EPS) models, luminosity-weighted mean age and metallicity of host galaxies were determined from
$H{\beta}$ andabsorption lines. Here we will discuss the correlation between the velocity dispersion, which indicates the mass of galaxies, and mean age of stellar population in our sample of early-type host galaxies. -
We present results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) Field. A background galaxy (z = 0.245) is severely distorted by an elliptical galaxy (z = 0.08), by gravitational lensing. We analyze this system by several methods, including Ellipse and Galfit fitting, gravitational lens modeling (gravlens), and SED fitting. Properties of the lens galaxy can be obtained: from Galfit we measure the effective radius and the average surface brightness inside it, and from gravlens we estimate the total mass inside the Einstein radius (lensing mass). We use these parameters to check that the lens galaxy is located on the Fundamental Plane. Also, we conduct SED fitting for the lens galaxy and estimate the stellar mass, and compare this with the lensing mass of the lens galaxy to check the M-L relation.
-
There exists strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. An important mechanism connecting AGN to their host galaxies is AGN feedback, potentially heating up or even expelling gas from galaxies. AGN feedback may hence be responsible for the eventual quenching of star formation and halting of galaxy growth. A rich multi-wavelength dataset ranging from the X-ray regime (Chandra), to far-IR (Herschel), and radio (WSRT) is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope, covering a total area on the sky of 5.4 sq. degrees. We investigate the star-formation properties and possible signatures of radio feedback mechanisms in the host galaxies of 237 radio-AGN below redshift z=2 and at a radio 1.4 GHz flux density limit of 0.1 mJy. Using broadband SED modeling, the nuclear and host galaxy components of these sources are studied simultaneously as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while offering evidence supporting a "maintenance" type of feedback from powerful radio-jets.
-
Gas in disk galaxies interacts nonlinearly with a underlying stellar spiral potential to form galactic spiral shocks. Numerical simulations typically show that these shocks are unstable to the wiggle instability, forming non-axisymmetric structures with high vorticity. While previous studies suggested that the wiggle instability may arise from the Kelvin-Helmholtz instability or orbit crowding of gas elements near the shock, its physical nature remains uncertain. It was even argued that the wiggle instability is of numerical origin, caused by the inability of a numerical code to resolve a shock that is inclined to numerical grids. In this work, we perform a normal-mode linear stability analysis of galactic spiral shocks as a boundary-value problem. We find that the wiggle instability originates physically from the potential vorticity generation at a distorted shock front. As the gas follows galaxy rotation, it periodically passes through multiple shocks, successively increasing its potential vorticity. This sets up a normal-mode that grows exponentially, with a growth rate comparable to the orbital angular frequency. We show that the results of our linear stability analysis are in good agreement with the those of local hydrodynamic simulations of the wiggle instability.
-
Kim, Eunbin;Kim, Sungsoo S.;Lee, Gwang-Ho;Lee, Myung Gyoon;Grijs, Richard De;Choi, Yun-Young 38.1
A non-axisymmetric mass distribution in the galactic bulge (or bar) causes gas flow from the disk to the nuclear region, inducing intense star formation in the nucleus. We investigate the relation between the ellipticity of the bulge and the presence of a nuclear starburst by using a volume-limited sample of galaxies. We use 1,680 spiral galaxies with Mr < -19.5 at 0.02 <= z < 0.05 in the Sloan Digital Sky Survey Data Release 7. We find that the occurrence of nuclear starburst has a moderate correlation with bulge ellipticity in intermediate-type spiral galaxies (morphology classes Sab~Sb) in low galaxy number density environments. In high galaxy number density environments, close encounters and mergers between galaxies can cause gas inflow to the nuclear region even without the presence of non-axisymmetric bulges. -
Radial light profiles of bars are known to be related to the morphology of their host galaxies in a way that bars in early type disk galaxies show flat radial light profile, while bars in late type disk galaxies show exponential profile. To quantify how flat or steep bar profiles are, we have performed detailed two-dimensional decompositions on 3.6 micron images for 144 barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), and then modeled bar profiles with Sersic functions. We find that bars in classical bulge, higher bulge-to-total (B/T) galaxies are flatter than bars in bulgeless, lower B/T galaxies. In particular, we find that the presence of a bulge almost always guarantees that the bar is flat. Conversely, bulgeless galaxies, mostly have bars with steep profiles. This implies that the light profile of bars may be a dynamical age indicator of bars. We also find that the shape of bars are boxy and do not change with B/T. This indicates that as galaxies evolve, bars change their light profile while keeping their outermost shape boxy.
-
We present the results of our analysis of the RR Lyrae (RRL) variable stars detected in two transition-type dwarf galaxies (dTrans), ESO294-G010 and ESO410-G005 in the Sculptor group, which is known to be one of the closest neighboring galaxy groups to our Local Group. Using deep archival images from the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (HST), we have identified a sample of RR Lyrae candidates in both dTrans galaxies [219 RRab (RR0) and 13 RRc (RR1) variables in ESO294-G010; 225 RRab and 44 RRc stars in ESO410-G005]. The metallicities of the individual RRab stars are calculated via the period-amplitude-[Fe/H] relation derived by Alcock et al. This yields mean metallicities of <[Fe/H]>_{ESO294} = -1.77 +/- 0.03 and <[Fe/H]>_{ESO410} = -1.64+/- 0.03. The RRL metallicity distribution functions (MDFs) are investigated further via simple chemical evolution models; these reveal the relics of the early chemical enrichment processes for these two dTrans galaxies. In the case of both galaxies, the shapes of the RRL MDFs are well-described by pre-enrichment models. This suggests two possible channels for the early chemical evolution for these Sculptor group dTrans galaxies: 1) The ancient stellar populations of our target dwarf galaxies might have formed from the star forming gas which was already enriched through "prompt initial enrichment" or an "initial nucleosynthetic spike" from the very first massive stars, or 2) this pre-enrichment state might have been achieved by the end products from more evolved systems of their nearest neighbor, NGC 55.
-
We present a photometric study of star clusters in the nuclear starburst region of NGC 253 using gVI, YJ, and H band images in the Hubble Space Telescope archive. We find about one thousand star clusters in about 200"x200" field by visual inspection with I<21. We also find about ten thousand star clusters in the same field by automated classification method with magnitude range of 21< I
$$\leq_-$$ 24. Ages and masses of star clusters are estimated using spectral energy distribution fitting method. Age distribution of star cluster shows two distinguished young populations with peak ages at 3.5 Myr and 18 Myr. Old populations (>100 Myr) are exist, but their number is small. About thirty young massive star clusters (<10 Myr, ) are found in nuclear region of NGC 253 which are regarded as a result of the recent starburst. Mass function of young star clusters in NGC 253 is somewhat different with those of star clusters in other galaxies. This result suggests that initial cluster mass functions (ICMFs) for star clusters are not universial. Especially ICMF in starburst galaxies may be distinguishable compared with those in normal spiral galaxies. We discuss the implications of these results. -
We have classified barred galaxies for 418 RC3 sample galaxies within z < 0.01 from SDSS DR7 using the visual inspection, ellipse fitting method and Fourier analysis. We found the bar fraction to be ~60%, 43% and 70% for each method and that the ellipse fitting method tends to miss the bar when a large bulge hides the transition from bar to disk in early spirals. We also confirmed that the Fourier analysis cannot distinguish between a bar and spiral arm structure. These systematic difficulties may have produced the long-time controversy about bar fraction dependence on Hubble sequence, mass and color. We designed a new method to fine bars by analyzing the ratio map of bar strength in polar coordinates, which yields the bar fraction of ~27% and ~32% for SAB and SB, respectively. The consistency with visual inspection reaches around 70%, and roughly 90% of visual strong bar are classified as SAB and SB in our classification. Although our method also has a weakness that a large bulge lowers the value of bar strength, the missing bar fraction in early spirals is reduced to the level of ~1/4 compared to the ellipse fitting method. Our method can make up for the demerits of the previous automatic classifications and provide a quantitative bar classification that agrees with visual classification.
-
Matsuoka, Kenta;Nagao, Tohru;Marconi, Alessandro;Maiolino, Roberto;Park, Daeseong;Woo, Jong-Hak;Shin, Jaejin;Ikeda, Hiroyuki;Taniguchi, Yoshiaki 40.2
The connection between the active galactic nuclei (AGNs) and star formation activity is one of the most important issues in understanding the coevolution of supermassive black holes (SMBHs) and galaxies. In our recent study, by using SDSS quasar spectra we found that the emission-line flux rations involving a nitrogen line, i.e.,$NV{\lambda}1240$ , correlate with the Eddington ratio. This correlation suggests that the mass accretion into SMBH is associated with a post-starburst phase, when AGB stars enrich the interstellar medium with the nitrogen. Moreover, we focused on nitrogen-loud quasars, which have prominent emission lines of the nitrogen, to investigate whether this argument is correct or not. We will present our recent results described above and discuss the relation between the star formation and feeding to SMBHs. -
Although the link between activity in the nuclei of galaxy and galactic mergers has been under scrutiny for several years, it is still unclear to what extent and for which populations of active galaxies merger-triggered activity is relevant. The environment of AGN allows an indirect probe of the past merger history and future merger probability of these systems, suffering less from sensitivity issues while extending to higher redshifts, compared to traditional morphological studies of AGN host galaxies. Here we present results from our investigation of the environment of radio selected sources out to redshift z=2. We employ the first data release J-band catalog from the new near-IR Infrared Medium-Deep Survey (IMS) and 1.4 GHz radio data from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey and a deep dedicated VLA survey of the VIMOS field, covering a combined total of ~20 sq. degrees. Given the flux limit of the combined radio catalog (0.1 mJy), we probe a radio luminosity range of 10^36-10^44 erg/s. Using the second and fifth closest neighbor density parameters, we test whether active galaxies inhabit denser environments and study these overdensities in terms of both distance to the AGN and its luminosity. We find evidence for a sub-population of radio-selected AGN that resides in significantly overdense environments at small scales, although we do not find significant overdensities for the bulk of our sample. We do not recover any dependence between the AGN radio-luminosity and overdensities. We show that radio-AGN inhabiting the most underdense environments in the field have vigorous ongoing star formation. We interpret these results in terms of the triggering and fuelling mechanism of radio-AGN.
-
Hierarchical merging scenario indicates that galaxies go through major and minor merger events during their formation and evolution. As a result of the merging, substructural features of remnants such as stellar stream are shown around a current galaxy system. To find evidence of stellar substructures on M31 system, we used the near-infrared images of JHK filters obtained from the Wide Field Camera (WFCAM) at UKIRT 3.8m. A total sky coverage is an area of about
$ 4.5^{\circ}{\times}6^{\circ}$ around M31. Indeed, M31 system which consists of several satellite systems contains stellar substructures such as giant stellar stream, loops, and spurs. By analysing stellar populations on the near-infrared color-magnitude diagrams, we selected member star candidates of each stellar substructure, from which we map out spatial distribution of stars in the vicinity of M31 system. Here, we present spatial density distribution maps of stars on each substructure over the entire field of M31 system. Also, we discuss the possible origin of the substructures and the implications on the galaxy assembly process. -
A gravitational weak-lensing map provides a weighted "picture" of the projected surface mass density and is to be an important tool for identifying "mass-selected" clusters of galaxies. However, weak-lensing maps have a limitation due to the projection of large-sclae structure along the line-of-sight. Geller et al. (2010) and Kurtz et al. (2012) compared massive clusters identified in a dense redshift survey with significant weak-lensing map convergence peaks. Both assessments of the efficiency of weak-lensing map for cluster identification did not draw a general conclusion, because the sample is so small. Thus, we additionally perform deep imaging observations of fields in a dense galaxy redshift survey that contain galaxy clusters at z~0.2-0.5, using CFHT Megacam. Our study will provide an important opportunity to examine the efficiency and completeness of a weak-lensing selection, and further to improve the method of cluster identification in future weak-lensing surveys.
-
We present high-resolution optical spectra of newly selected candidates of intermediate-mass black holes. The sample was selected based on the variability and spectral shape in X-ray. The spectra was taken with Magellan 6.5 m Clay Telescope and cover the rest-frame region 3500-10000A. The high spectral resolution (R~4000) of the spectrum allows us to estimate BH masses of the sources. Interestingly, the majority of the sample appears to have broad emission lines. Using this dataset, we will estimate the BH masses and Eddington ratio in order to understand their physical properties.
-
It has been suggested that only the most luminous AGNs (
$L{\geq}$ [10]$^{45}L_{\odot}$ ) are triggered by galaxy mergers, while less luminous AGNs (L~ [10]$^{43}L_{\odot}$ ) are driven by other internal processes. Lack of merging features in low luminosity AGN host galaxies has been a main argument against the idea of merger triggering of low luminosity AGNs, but merging, especially a rather minor one, might still have played an important role in low luminosity AGNs since minor merging features in low luminosity are more difficult to identify than major merging features. Using SNUCAM on the 1.5m telescope at Madanak observatory, we obtained deep images of NGC 7743 which is a barred spiral galaxy classified as a Seyfert 2 AGN with a low bolometric luminosity of$5{\times}$ [10]$^{42}L_{\odot}$ . Surprisingly, we newly discovered merging features around the galaxy, which indicate past merging activity on the galaxy. This example indicates the merging fraction of low luminosity AGNs may be much higher than previously thought, hinting the importance of galaxy merger even in low luminosity AGN. -
We investigate the ionized gas kinematics at the center of 6 nearby Seyfert galaxies, using the integral field spectroscopy data from the Calar Alto Legacy Integral Field spectroscopy Area survey Data Release 1. To understand the kinematic nature of the ionized gas in the narrow-line regions (NLRs), we measured the flux, velocity, and velocity dispersion of the [OIII]
$5007{\AA}$ and Ha$6563{\AA}$ emission lines, after subtracting a best-fit stellar population model representing the stellar features. At the same time, we measured stellar velocity as a reference for the systemic velocity, and stellar velocity dispersion. We spatially resolved the velocity structure of the ionized gas using each emission line and compared it to that of stars. In this poster we present the flux, velocity, and velocity dispersion maps of the ionized gas and stars, and discuss the nature of the ionized gas outflows in the central kiloparsec scale. -
Blue Compact Dwarf galaxies (BCDs) are systems that recently have experienced the burst of star formation. As one of the causes for active star formation in BCDs, tidal interaction (fly-by or merger) has been suggested. A pair of BCDs, ESO 435-IG20 and ESO 435-IG16 are separated by only ~80 kpc in projection at a similar redshift (at a ~9 Mpc distance), and hence suspected to be a good example of such case. Intergalactic atomic hydrogen gas found in HIPASS survey is also suggestive of this hypothesis. In this study, we probe the HI morphology and kinematics of this BCD pair using ATCA HI data to study detailed interaction history. We investigate various star formation tracers of the pair to study how responsible tidal interaction is for triggering star formation in these galaxies.
-
We investigate the influence of neighboring galaxies as a component of the local environment. Based on the SDSS data release 7 and the KIAS value-added galaxy catalog, we have constructed a galaxy pair catalog by matching each galaxy with its nearest and its most tidally-influential neighbor. In particular, we examine the star formation rate (SFR) derived from their optical u-r color and
$H{\alpha}$ emission as functions of neighbor's distance, tidal force, and morphological type. The results are as follows. (1) The$H{\alpha}$ -based SFR of galaxies with close companions is enhanced by up to a factor of three regardless of neighbor's morphology, when compared to isolated counterparts. (2) The mean u-r color of galaxies along with early-type galaxies is redder than that of isolated ones, yet bluer with late-types. (3) The galaxies with late-type companions mostly show higher SFR than those with early-types. The results suggest that the role played by neighboring galaxies are two-fold; (a) the tidal effect on the shorter scale of time and of distance, and (b) the hydrodynamic effect on the longer scale. -
We present the results of a time series analysis of the long-term radio lightcurves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program which provides densely sampled lightcurves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5,GHz. Our sources show mostly flat or inverted (spectral indices -0.5 < alpha < 0) spectra, in agreement with optically thick emission. All lightcurves show strong variability on all time scales. Analyzing the time lags between the lightcurves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accord with the classification of Valtaoja et al. (1992). The periodograms (temporal power spectra) of the observed lightcurves are consistent with random-walk powerlaw noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars.
-
We carry out the first survey for globular clusters (GCs) of three galaxies in cosmic voids using Hubble Space Telescope (HST) Advanced Camera for Survey archival F606W and F814W images. While all sample galaxies are classified as early-type galaxies based on ground-based imaging, the high resolution HST images reveal that they are actually spiral galaxies. We identify the point sources with red colors typical for GCs as GC candidates in the color-magnitude diagrams. As a result, we find a significant number of GC candidates. The spatial and radial distribution of GCs show central concentration on each galaxy region. Their mean colors are similar to that of the Milky Way and M31 GCs. The void GCs are somewhat bluer by, and than cluster and field GCs in early-type galaxies with similar luminosity to our samples, but the discrepancy is not significant. We also estimate the specific frequencies of GCs in these galaxies and the values are consistent with those in field and cluster galaxies with similar luminosity. From these results, we suggest that the formation process of void GCs is similar to that of GCs in other environments. The further implications will be discussed.
-
In understanding "cooling flow" problem and the galaxy-SMBH co-evolution, AGN feedback is considered as one of the most important phenomena. Among various AGN feedback phenomena, X-ray cavities are particularly useful for studying AGN feedback over 10 kpc scales, as the origin of X-ray cavities is believed to be related to radio jet from AGN. For a comprehensive study of X-ray cavities, we collect all available diffuse X-ray data of galaxies in various galaxy environments, ranging from field galaxies to galaxy clusters, using the Chandra X-ray data archive. As a result we build up a sample of 87 targets showing enough X-ray photons to perform the analysis. Using modeling and unsharp masking techniques, we detected X-ray cavities and measured their physical properties (i.e., cavity size) for the 49 targets. Here, we present X-ray cavity properties and discuss environmental effects.
-
Oh, Seulhee;Yi, Sukyoung K.;Sheen, Yun-Kyeong;Kyeong, Jaemann;Sung, Eon-Chang;Kim, Minjin;Park, Byeong-Gon 46.2
Galaxy morphology is involved complex effects of both secular and non-secular evolution of galaxies. Although it is a final product of a galaxy evolution, it may give a clue for the process that the galaxy suffer. Galaxy clusters are the sites where the most massive galaxies are found, and the most dramatic merger histories are embedded. Morphology study in nearby universe, e.g. Virgo cluster, is well established, but for clusters at z ~ 0.1 it is only focused on bright galaxies due to observational limits. Our optical deep imaging of 14 Abell clusters at z = 0.014 - 0.16 using IMACS f/2 on a Magellan Badde 6.5-m telescope and MegaCam on a 3.8-m CFHT enable to classify detailed morphology. For the galaxies in our data, we investigated their morphology with several criteria related to secular or merger related evolution. Our research on detailed morphology of thousands of galaxies through deep imaging would give a general census of cluster galaxies and help to estimate the evolution of cluster galaxies. -
We examine the effect of environment on star formation activity of a sample of galaxy group catalogue given in Tempel et al.(2012) constructed from the Sloan Digital Sky Survey Data Release 8. In order to compare galaxies in different environment, we classify galaxies into two groups: galaxies in low density environment and galaxies in high density environment. After matching colors and apparent magnitudes of the galaxies, we are left with 5912 galaxies in each of the environment category. The fraction of star-forming galaxies in low-density environment is ~34%, higher than ~15% in high-density environment. Star-forming galaxies in low density environment have a higher average SFR value than those in high density environment. The bulge-to-disk ratio for galaxies in two different environment shows bimodal distribution. Regardless of the environment, we find galaxies with high star formation rate despite their red (g-r) color, for which the origin enhancing their star formation rate is investigated.
-
Several studies have reported the presence of sodium excess objects having neutral atomic absorption lines at
$5895{\AA}$ (NaD) and$8190{\AA}$ that are deeper than expected based on stellar population models that match the stellar continuum. The origin of these lines is therefore hotly debated. van Dokkum & Conroy proposed that low-mass stars (0.3M) are more prevalent in massive early-type galaxies, which may lead to a strong NaI 8190 line strength. It is necessary to test this prediction, however, against other prominent optical line indices such as NaD, Mgb, and Fe5270, which can be measured with a significantly higher signal-to-noise ratio than NaI 8190. We identified a new sample of roughly one thousand NaD excess objects (NEOs; ~8% of galaxies in the sample) based on NaD line strength in the redshift range 0.00$H{\beta}$ line strengths and significant emission lines, which are indicative of the presence of young stellar populations. This result implies that the presence of the interstellar medium and/or dust contributes to the increase in NaD line strengths observed for these galaxies. -
Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly(Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012) and evolution of galaxies in cluster have been still controversial (Elbaz et al. 2007, Cooper et al. 2008, Tran et al. 2009). Finding galaxy cluster candidates at z>1 in a wide, deep imaging survey data will enable us to solve the such issues of modern extragalactic astronomy. We report new candidates of galaxy clusters and their physical properties in one of the wide and deep survey fields, European Large Area ISO Survey North1(ELAIS-N1) and North2(ELAIS-N2) fields, covering sky area of and each. We also suggest a new useful color selection technique to separate 1 < z < 2 galaxies from low-z galaxies by combining multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS/J and K band), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE/two mid-infrared bands), Canada France Hawaii Telescope (CFHT/z band), Issac Newton Telescope(INT/ u, g, r, i, z band) and Infrared Medium-deep Survey(IMS/J band).
-
We present long-term optical to NIR data of the tidal disruption object, Swift J1644+57. The data were obtained with CQUEAN, UKIRT WFCAM observations. We analyze the morphology of the host galaxy of this object and decompose the bulge component using high resolution HST WFC3 images. We conclude that the host galaxy is bulge dominant. We also estimate the multi-band fluxes of the host galaxy through the light curves based on the long-term observational data. We fit the SED models to the multi-band fluxes of the host galaxy and determine its stellar mass. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The estimated stellar mass and black hole mass are
${\sim}10^{9.1}M_{\odot}$ ,${\sim}10^{6.8}M_{\odot}$ , respectively. We compare our results to other previous estimates. -
Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio 49.1
The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on will be performed on orbit. After the System Requirement Review, the optical design is changed from on-axis to the off-axis telescope which has a wide field of view (2 deg.${\times}$ 2 deg.) as well as the wide wavelength range from 0.95 to$3.8{\mu}m$ . The mechanical structure is considered to endure the launching condition as well as the space environment. The design of relay optics is optimized to maintain the uniform optical performance in the required wavelength range. The stray light analysis is being made to evade a light outside a field of view. The dewar is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope can be cooled down to around 200K in order to reduce the large amount of thermal noise. Here, we report the current status of the NISS development. -
Han, Wonyong;Lee, Dae-Hee;Jeong, Woong-Seob;Park, Youngsik;Moon, Bongkon;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio 49.2
The MIRIS (Multi-purpose InfraRed Imaging System) is a compact IR space Telescope, which has been developed by KASI since 2008 as the main payload of Korean STSAT-3. It was launched successfully by a Dnepr Rocket at Yasny Launch site, Russia in November 2013. After the launch, the STSAT-3 successfully settled down at Sun synchronous orbit with altitude of ~ 600km. Communications were regularly made between the ground station and the MIRIS with other secondary payload. We made a series of tests of the MIRIS during the verification period and found that all functions including the passive cooling are working as expected. The MIRIS has a wide-field of view$3.67{\times}3.67$ degrees and wavelength coverage from 0.9 to 2.0 micro-meter with the angular resolution of 51.6 arcsec. The main science missions of the MIRIS are (1) mapping of the Galactic plane with Paschen-alpha line (1.88 micro-meter) for the study of warm interstellar medium and (2) the measurement of large angular fluctuations of cosmic near infrared background radiation with I (1.05 micro meter) and H (1.6 micro meter) bands to identify their origin. We present the results of MIRIS initial operation in this paper. -
Lee, Duk-Hang;Moon, Bongkon;Jeong, Woong-Seob;Pyo, Jeonghyun;Lee, Chol;Kim, Son-Goo;Park, Youngsik;Lee, Dae-Hee;Park, Sung-Joon;Kim, Il-Joong;Park, Won-Kee;Seon, Kwang-Il;Nam, Uk-Won;Cha, Sang-Mok;Park, Kwijong;Park, Jang-Hyun;Yuk, In-Soo;Ree, Chang Hee;Jin, Ho;Yang, Sun Choel;Park, Hong-Young;Shin, Ku-Whan;Suh, Jeong-Ki;Rhee, Seung-Wu;Park, Jong-Oh;Lee, Hyung Mok;Matsumoto, Toshio;Han, Wonyong 50.1
The Multi-purpose InfraRed Imaging System (MIRIS) is the main payload of Science and Technology Satellite 3 (STSAT-3), which was launched onboard Dnepr rocket from Russian Yasny Launch Base in November 2013. The MIRIS is an infrared (IR) camera, and the telescope has to be cooled down to below 200K in order to reduce thermal background noise. For the effective cooling and low-power consumption, we applied passive cooling method to the thermal design of the MIRIS. We also conducted thermal analysis and tested for the passive cooling before the launch of STSAT-3. After the launch, we have received State-of-Health (SOH) data from the satellite on orbit, including temperature monitoring results. It is important that the temperature of the telescope was shown to be cooled down to below 200K. In this paper, we present both the temperature data of the MIRIS on orbit and the thermal analysis results in the laboratory. We also compare these results and discuss the verification of the passive cooling. -
지상에서 관측한 태양계 천체의 분광자료에는 여러 가지 자료들이 포함되어 있다. 태양계 천체는 태양빛을 받아 반사되는 빛이 관측되기 때문에 태양 분광선도 포함되어 있고, 지구 대기를 통과하기 때문에 지구 대기 흡수선 및 방출선도 포함되어 있다. 특히 지구 대기에 의한 분광선은 관측지의 위치, 관측일의 날씨 등이 영향을 미칠 수 있다. 그 외에도 기기에서 발생하는 여러 잡음들이 합쳐진 관측 자료가 획득된다. 이렇게 얻어진 관측 결과로부터 태양 분광선, 지구 대기 흡수선, 기기로부터의 잡음 등을 제거해서 최종적으로 순수한 태양계 천체의 분광선을 획득하게 된다. 본 연구에서는 현재 개발중인 우주탐사선용 중적외선 분광기 지상모델의 현장 검증과정에서 생산될 수 있는 관측 자료에 대한 모사를 하고자 한다. 이 자료는 향후 관측 당시의 대기 상태 및 기기 상태에 따라 발생되는 관측 결과를 예상할 수 있기 때문에 관측 날짜 지정 및 기기 상태 점검에 유용하게 사용될 것이라고 기대한다.
-
Chung, Haeun;Ramaprakash, A.N.;Omar, Amitesh;Ravindranath, Swara;Chattopadhyay, Sabyasachi;Rajarshi, Chaitanya V.;Khodade, Pravin 51.1
DOTIFS is a new multi-object Integral Field Spectrograph (IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for the Cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT). The telescope is constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital (ARIES). Its main scientific objectives are the physics and kinematics of the ionized gas, star formation and H II regions in nearby galaxies. It is a novel instrument in terms of multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs), and 8 spectrographs. Each IFU is comprised of a microlens array and 144 optical fibers, and has$7.4^{\prime\prime}{\times}8.7^{\prime\prime}$ field of view with 144 spaxel elements with a sampling of 0.8" hexagonal aperture. The IFUs can be deployed on the telescope side port over an 8' diameter focal plane by x-y actuators. 8 Identical, all refractive, dedicated fiber spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength range with single exposure. Currently, conceptual and baseline design review had been done, and is in the critical design phase with a review planned for later this year. Some of the components have already arrived. The instrument will see its first light in 2015. -
CQUEAN(Camera for QUasars in EArly uNiverse) has been used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010. This camera is optimized at 0.7 - 1.1 um for the survey of Lyman break of high redshift (z > 5) quasars in the early universe. The current system has a filter wheel consist of seven (g', r', I', z', Y, Iz and Is) broad-band filters. We are upgrading this filter wheel to have 20 narrow band filters, with which we can take spectral energy distributions of targets. The new filter wheel consists of interchangeable cartridges for 50 mm square filters, a speed reducer unit, and a step motor. This new design of the large size filter wheel can be applied to other large format CCD cameras.
-
Radio pulsars are highly magnetized, rapidly rotating neutron stars that emit synchrotron radiation along the magnetic axes at their spin frequencies. Traditionally, pulsar observations have been done at low frequencies (MHz up to a few GHz), since radio pulsar spectrum is known to a power-law with a steep negative spectral index. More recently, high-frequency pulsar observations (several GHz and above) have been made as a broadband spectrometer and fast computers became available. High-frequency pulsar observations will provide information on radio emission mechanism of pulsars in the vicinity of the neutron star surface. There is also huge interest from gravitational-wave and astrophysics community to find a pulsar in the center of our Galaxy. The Korean VLBI Network has three 21-m single dishes in the Korean peninsula. Using KVN's lowest observational frequency of 22-GHz, we performed test observations with the KVN targeting a few selected known, bright pulsars. In addition, we have been developing pulsar pipelines that can be utilized with a VLBI facility using Mark-V. We present a brief introduction of radio pulsars and show data obtained with the KVN.
-
Park, Chan;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Park, Byeong-Gon;T., Daniel 52.2
The Immersion Grating Infrared Spectrometer (IGRINS) is an unprecedentedly minimized infrared cross-dispersed echelle spectrograph with a high-resolution and high-sensitivity optical performance. A silicon immersion grating features the instrument for the first time in this field. IGRINS will cover the entire portion of the wavelength range between 1.45 and$2.45{\mu}m$ accessible from the ground in a single exposure with spectral resolution of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is$1^{\prime\prime}{\times}15^{\prime\prime}$ . IGRINS has a$0.27^{\prime\prime}$ pixel-1 plate scale on a$2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized rectangular vacuum chamber. The fabrication and assembly of the optical and mechanical hardware components were completed in 2013. In this presentation, we describe the major design characteristics of the instrument and the early performance estimated from the first light commissioning at the McDonald Observatory. -
본 연구에서는 고궤도 및 원거리 우주물체의 추적 및 관측이 용이한 광학관측 시스템을 이용하여 정지궤도위성을 관측하였고, 광도곡선 분석을 통해 식별정보를 획득하였다. 정지궤도 위성은 자세에어 방법에 따라 회전 안정화 위성과 3축 안정화 위성으로 나뉘며, 3축 안정화 위성은 다시 통신위성과 지구관측 위성 등으로 나뉜다. 회전 안정화 위성의 식별 연구를 위해 중국의 FY-2 위성을 관측대상으로 선정하였고, 3축 안정화 위성의 식별을 위해 한국의 COMS-1 위성을 관측 대상으로 선정하였다. 회전안정화 위성은 Sidereal Tracking Mode로 관측하면 위성의 궤적이 선 모양으로 나타난다. 이때 나타난 궤적의 pixel value 값을 확인하면 일정한 주기로 밝기가 변화 하는 것을 확인할 수 있으며, FFT를 수행하면 위성의 회전율과 회전 주기를 구할 수 있다. 3축 안정화 위성은 Stare Mode로 관측하여 측광하면 광도곡선을 획득할 수 있다. 위성의 형상을 결정하는 본체, 안테나, 태양전지판을 모델링하여 광도곡선 시뮬레이션결과와 비교하면 각각의 형상이 광도곡선에 미치는 영향과 특징을 알 수 있고, 이를 통해 식별정보를 획득할 수 있다. 이상의 분석을 통해 얻은 FY-2위성과 COMS-1 위성의 식별정보를 제시하고 향후 우주물체 식별 연구에 활용하고자 한다.
-
Oh, Jae Sok;Park, Chan;Cha, Sang-Mok;Yuk, In-Soo;Park, Kwijong;Kim, Kang-Min;Chun, Moo-Young;Ko, Kyeongyeon;Oh, Heeyoung;Jeong, Ueejeong;Nah, Jakyuong;Lee, Hanshin;Pavel, Michael;Jaffe, Daniel T. 53.2
IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors serves a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, a housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well. -
Lee, Seongwhan;Lee, Junkyu;Kum, Kanghoon;Lee, Hyojeong;Seo, Junwon;Shin, Youra;Jeong, Seonyoung;Shin, Jehyuck;Cheon, Junghoon;Kim, Hanjun;Jin, Ho;Nam, Uk-Won;Kim, Sunghwan;Lee, Regina;Lessard, Marc R. 54.1
Kyung Hee University has been developing a CubeSat for the space science mission called SIGMA (Scientific cubesat with Instrument for Global Magnetic field and rAdiation), which includes TEPC (Tissue Equivalent Proportional Counter) and a magnetometer. SIGMA has a 3-unit CubeSat, and the weight is about 3.2 kg. The main payload is TEPC which can measure the Linear Energy Transfer (LET) spectrum and calculate the equivalent dose for the complicated radiation field in the space. The magnetometer is a secondary payload using a miniaturized fluxgate magnetometer. We expect it to have a 1 nT resolution in the dynamic range of${\pm}65535$ nT. An Attitude Control System (ACS) spins the SIGMA spacecraft 4 rpm with the spin axis perpendicular to the ecliptic plane. Full duplex communication is consists of VHF uplink and S-band and UHF downlink. In this paper, we introduce the system design and the scientific purpose of the SIGMA CubeSat mission. -
Lee, Hye-In;Pak, Soojong;Sim, Chae Kyung;Le, Huynh Anh N.;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin;Pavel, Michael;Jaffe, Daniel T. 54.2
IGRINS (Immersion GRating Infrared Spectrograph) is a high spectral resolution near-infrared spectrograph that has been developed in a collaboration between the Korea Astronomy & Space Science Institute and the University of Texas at Austin. By using a silicon immersion echelle grating, the size of the fore optics is reduced by a factor of three times and we can make a more compact instrument. One exposure covers the whole of the H- and K-band spectrum with R=40,000. While the operation of and data reduction for this instrument is relatively simple compared to other grating spectrographs, we still need to operate three infrared arrays, cryostat sensors, calibration lamp units, and the telescope during astronomical observations. The IGRINS Instrument Control Software consists of a Housekeeping Package (HKP), Slit Camera Package (SCP), Data Taking Package (DTP), and Quick Look Package (QLP). The SCP will do auto guiding using a center finding algorithm. The DTP will take the echellogram images of the H and K bands, and the QLP will confirm fast processing of data. We will have a commissioning observations in 2014 March. In this poster, we present the performance of the software during the test observations. -
With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. It is, however, not generally recognized that the binary induced pattern, vertically extended from the orbital plane, exhibits a ring-like pattern with an inclined viewing angle. I will first review the binary-induced spiral-shell patterns on the AGB circumstellar envelopes with the effect of inclination angle with respect to the orbital plane, of which large inclination cases reveal incomplete ring-like patterns. I will describe a method of extracting such spiral-shell from the gas kinematics of an incomplete ring-like pattern to place constraints on the characteristics of the (unknown) central binary stars. This first success may open the possibility of connecting the ring-like patterns commonly found in the AGB circumstellar envelopes and in the outer parts of (pre-)planetary nebulae and pointing to the conceivable presence of central binary systems, which may give a clue for the onset of asymmetrical planetary nebulae.
-
Shinn, Jong-Ho;Pyo, Tae-Soo;Lee, Jae-Joon;Lee, Ho-Gyu;Kim, Hyun-Jeong;Koo, Bon-Chul;Sung, Hwankyung;Chun, Moo-Young;Lyo, A. Ran;Moon, Dae-Sik;Kyeong, Jaemann;Park, Byeong-Gon;Hur, Hyeonoh;Lee, Yong-Hyun 56.2
We present [Fe II] 1.64${\mu}m$ imaging observations for jets and outflows from young stellar objects over the northern part (${\sim}24^{\prime}{\times}45^{\prime}$ ) of the Carina Nebula, a massive star forming region. The observations were performed with IRIS2 of Anglo-Australian Telescope and the seeing was ~1.5". Eleven jets and outflows features are detected at eight different regions, and are termed as Ionized Fe Objects (IFOs). The [Fe II] features have knotty or elongated shapes, and the detection rate of IFOs against previously identified YSOs is 1.4%. Four IFOs show anti-correlated peak intensities in [Fe II] and$H{\alpha}$ , where the ratio I([Fe II])/I($H{\alpha}$ ) is higher for longish IFOs than for knotty IFOs. We estimate the outflow mass loss rate from the [Fe II] flux using two different methods. The jet-driving objects are identified for three IFOs (IFO-2, -4, and -7). The ratios of the outflow mass loss rate over the disk accretion rate for IFO-4 and -7 are consistent with the previously reported values ($10^{-2}-10^{+1}$ ), while the ratio is higher for IFO-2. This excess may result from underestimating the disk accretion rate. Other YSO physical parameters show reasonable relations or trends. -
We present the preliminary results of CO outflow survey toward the 56 Very Low Luminosity Object (VeLLO) candidates at CO J=2-1 and J=3-2 transitions with two radio telescopes of the Caltech Submillimeter Observatory (CSO) and the Atacama Submillimeter Telescope Experiment (ASTE). The survey is aimed to understand the origin of the formation of low-mass stars or substellar objects. The VeLLO is a very faint (
${\leq}0.1$ $L_{\odot}$ ) object deeply embedded in dense molecular clouds and believed to be a proto-brown dwarf which will be a brown dwarf or a faint protostar which has just formed with little mass accretion or which is in quiescent stage of episodic accretion. The candidates were searched for over all nearby ($d{\leq}450$ pc) Gould belt clouds and listed in a new catalogue of the VeLLO candidates by Kim et al. (2014 submitted). To diagnose present status and future fate of the VeLLOs, we conducted a systematic observation for the CO molecular outflows of the 56 VeLLOs to infer how accretion is being made around the VeLLOs. We found 17 VeLLO candidates either having a prominent wing in line profiles or showing bipolar intensity distribution of high velocity components. We will discuss the physical properties of these CO outflows and the identity of the VeLLO candidates. -
Protostellar jets and outflows are signatures of star formation and promising mechanisms for driving supersonic turbulence in molecular clouds. We quantify outflow-driven turbulence through three-dimensional numerical simulations using an isothermal version of the total variation diminishing code. We drive turbulence in real space using a simplified spherical outflow model, analyze the data through density probability distribution functions (PDFs), and investigate density and velocity power spectra. The real-space turbulence-driving method produces a negatively skewed density PDF possessing an enhanced tail on the low-density side. It deviates from the log-normal distributions typically obtained from Fourier-space turbulence driving at low densities, but can provide a good fit at high densities, particularly in terms of mass-weighted rather than volume-weighted density PDF. We find shallow density power-spectra of -1.2. It is attributed to spherical shocks of outflows themselves or shocks formed by the interaction of outflows. The total velocity power-spectrum is found to be -2.0, representative of the shock dominated Burger's turbulence model. Our density weighted velocity power spectrum is measured as -1.6, slightly less that the Kolmogorov scaling values found in previous works.
-
We model the polarized dust emission from aligned grains by radiative torques in molecular clouds. We consider various models of molecular clouds and calculate the polarization spectrum from aligned grains by both internal and external radiation fields. We show that some polarization spectrum exhibits the bump at wavelengths
${\lambda}$ <$100{\mu}m$ , which can be explained due to the polarized emission from a population of small grains aligned by internal radiation fields. Our polarization spectra can explain the anomalous spectra observed by Hildebrand et al, with the rising polarization toward short wavelengths -
The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (
${\sim}2{\times}10^4M_{\odot}$ ) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1$M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF. -
Phosphorus (
$^{31}P$ ), which is essential for life, is thought to be synthesized in massive stars and dispersed into interstellar space when these stars explode as supernovae (SNe). Here we report on near-infrared spectroscopic observations of the young SN remnant Cassiopeia A, which show that the abundance ratio of phosphorus to the major nucleosynthetic product iron ($^{56}Fe$ ) in SN material is up to 100 times the average ratio of the Milky Way, confirming that phosphorus is produced in SNe. The observed range is compatible with predictions from SN nucleosynthetic models but not with the scenario in which the chemical elements in the inner SN layers are completely mixed by hydrodynamic instabilities during the explosion. -
Radiative transfer models in a spherical, turbulent interstellar medium (ISM), in which the photon source is situated at the center, are calculated to investigate the correlation between the scattered light and the dust column density. The medium is modeled using fractional Brownian motion structures that are appropriate for turbulent ISM. The correlation plot between the scattered light and optical depth shows substantial scatter and deviation from simple proportionality. It was also found that the overall density contrast is smoothed out in scattered light. In other words, there is an enhancement of the dust-scattered flux in low-density regions, while the scattered flux is suppressed in high-density regions. The correlation becomes less significant as the scattering becomes closer to being isotropic and the medium becomes more turbulent. Therefore, the scattered light observed in near-infrared wavelengths would show much weaker correlation than the observations in optical and ultraviolet wavelengths. We also find that the correlation plot between scattered lights at two different wavelengths shows a tighter correlation than that of the scattered light versus the optical depth.
-
The star
${\zeta}$ Ophiuchi (HD 149757) is one of the brightest massive stars in the northern hemisphere and was widely studied in various wavelength domains. We report the analysis results of far ultraviolet (FUV) observations with other wavelengths for around${\zeta}$ Ophiuchi. We study the correlation of between multi wavelength observations. We have developed a Monte Carlo code that simulates dust scattering of light including multiple encounters. The code is applied to the present Oph HII region to obtain the geometrical information of dust such as distance and thickness. Also We apply three-dimensional photoionization code to model Wisconsin$H{\alpha}$ Mapper observations of the H II region surrounding the star. -
The dust cloud around
${\lambda}$ -Orionis is seen to be circular symmetric with the large angular extent (${\sim}8^{\circ}$ ). However, whether the three dimensional structure of the cloud is shell or torus ring is not yet fully resolved. We studied the structure of the dust cloud using a three-dimensional Monte-Carlo simulation code, MoCafe (Monte Carlo radiative transfer). The dust density structure of the cloud was inferred based on the star-count method. We assumed that the cloud is a spherical shell or a torus ring and calculated the radial profiles of scattered light originating from a central OB association. Comparison of the results with the S2/68 ultraviolet observations indicates that the cloud is a spherical shell. We also compared the Av map around${\lambda}$ -Orionis with the optical depth obtained based on the star-count. -
GSH 006-15+7 is a Milky Way supershell discovered by Moss et al. (2012). This supershell shows large shell-like structures in H I velocity maps. We have analyzed FUV emission for the supershell regions based on the FIMS and GALEX observations. Bright FUV flux at the boundaries of the supershell is mostly originated from dust scattering of FUV photons by dust clouds which was also observed at the boundaries of the supershell. We could find the distance to the supershell can be closer more than 30% compared with the distance of 1500 pc suggested by Moss et al. (2012) from the dust scattering simulation. And we also found the albedo and the phase function asymmetry factor of interstellar grains were 0.30 and 0.40, respectively. The confidence range for the albedo covers the theoretical value of 0.40, but g-factor is rather smaller than the theoretical value of 0.65. The small g-factor might mean the environment of turbulent ISM of the supershell. Meanwhile, the excess of C IV and X-ray emissions in the inside of the supershell can support the existence of hot gas and cooling in the supershell. And the C IV and X-ray emissions are monotonically decrease as away from the center of the SNR. This indicates the size of the hot bubble has considerably shrunk. We applied a simple simulation model to the PDR candidate region of the lower part of the supershell and obtained a H2 column density N(H2) = 1017.0-18.0 cm-2 and total hydrogen density nH
${\geq}$ 10 cm-3. This result shows the PDR candidate region represents a transition region from the warm phase to the cool phase in the PDR. -
We present a set of fiducial sequences of horizontal-branch stars in bright Galactic globular clusters, which have previously been observed in the Sloan Digital Sky Survey (SDSS). We derive fiducial lines on color-magnitude diagrams in multiple color indices (g - r, g - i, g - z, and u - g), after rejecting foreground and background objects as well as RR Lyrae variables utilizing these color indices. We compare our fiducial sequences with model predictions from Yonsei-Yale evolutionary tracks and BaSel spectral libraries, and find a satisfactory agreement between them in terms of their color-magnitude relations, except in u - g. We also compare theoretical models to color-magnitude diagrams of two open clusters (M67 and NGC 6791). Based on our best available cluster distance and reddening, we find that the mass of red clump (RC) stars in NGC 6791 is about a factor of two smaller than an earlier estimate from the application of asteroseismic scaling relations for solar-like oscillations. The smaller RC mass implies an enhanced mass loss along the red giant branch, which is in accordance with other compelling evidences found in this metal-rich system. Our estimated luminosity of RC stars in NGC 6791 is about 0.2 mag fainter than in earlier investigations based on solar-metallicity calibrations, and results in ~10% reduction in the RC-based distance estimation, when applied to metal-rich systems such as in the Galactic bulge.
-
We present preliminary results on the chemical differentiation of two dense gas tracers CS and
$N_2H^+$ in five 'evolved' starless cores, L1544, L1552, L1689B, L694-2 and L1197, using our mapping observations in$C^{34}S$ (J=2-1) and$N_2H^+$ (J=1-0) with Nobeyama 45-m telescope. We compared the intensity maps of two molecular lines with 850${\mu}m$ continuum data which precisely trace the density distribution of the dense cores, finding that all of our targets show the central depletion holes in CS distribution, but the similar distribution in$N_2H^+$ to the one in dust continuum. Our data confirm the claim that CS molecule generally deplete out in the central region in starless cores, while$N_2H^+$ keep abundant as they get evolved. The detailed quantitative analysis on CS depletion in the dense cores, for example, the size of CS depletion area and radial (or gas density) dependence of CS depletion, is underway and will be presented in the meeting. -
We compiled near-infrared photometric and polarimetric catalog of sources in ~3
$9^{\prime}{\times}69^{\prime}$ size field in the eastern side of the Large Magellanic Cloud (LMC). This catalog lists all 1969 sources which are brighter than 14 mag and which signal to noise ratio of degree of polarization is greater than 3 in the J, H, and Ks bands. The photometric and polarimetric data were simultaneously obtained in J, H, and Ks bands using SIRPOL, an imaging polarimeter of the InfraRed Survey Facility (IRSF), in 2008 December and 2011 December. We classified the objects into several groups based on their locations on the color-magnitude diagram and compared their general properties of polarization. We measured wavelength dependence of this field to verify interstellar polarization of the LMC which occurred from the dichroic extinction. We also discuss the polarization structure in this field with the results from molecular cloud studies. -
We present a study on the parsec-scale jets from young stellar objects using long-slit spectroscopic data obtained from Bohyunsan Optical Astronomy Observatory on 2012 - 2014. Through the position-velocity diagrams, we show the radial velocity variation, peak velocity and velocity width of the outflow from several T Tauri stars and Herbig Ae/Be star.
$H{\alpha}$ , [OI] 6300/6363, [NII] 6548/6584 and [SII] 6716/6731 emission lines are obtained and they show various velocity features. We also compare our result with other data from literatures. -
As a part of the "Dust, Ice, and Gas In Time" (DIGIT) key program on Herschel, we observed GSS30-IRS1, a Class I protostar located in Ophiuchus (d =125 pc), with Herschel/Photodetector Array Camera and Spectrometer (PACS). More than 70 lines were detected within a wavelength range from 50
${\mu}m$ to 200${\mu}m$ : CO lines from J = 14-13 to 41-40, several$H_2O$ lines of Eup = 100 K to 1500 K, 16 transitions of OH rotational lines, and two atomic [O I] lines at 63 and 145${\mu}m$ . The [C II] line, known as a tracer of externally heated gas by the interstellar radiation field, is also detected at 158${\mu}m$ . All lines, except [O I] and [C II], are detected only at the central spaxel of$9^{\prime\prime}.4{\times}9^{\prime\prime}.4$ . The [O I] emission is extended along a NE-SW orientation, which is consistent with the known outflow direction, while the [C II] line is detected over all spaxels. One possible explanation of the detection of the [C II] line and no correlation of its spatial distribution with any other molecular emission is the existence of the enhanced ISRF nearby GSS30-IRS1. One interesting feature of GSS30-IRS1 is that the continuum emission is extended beyond the point-spread function (PSF), unlike the molecular line emission, indicative of significant external heating. The best-fit continuum model of GSS30-IRS1 with the physical structure including flared disk, envelope, and outflow shows that the internal luminosity is 11$L_{\odot}$ , and the region is also externally heated by a radiation field enhanced by a factor of 25 compared to the local standard interstellar field. -
달에 떨어지는 유성체(lunar meteoroid)는 그대로 표면에 충돌하여 섬광(flash)을 일으킨다. 이 현상은 매우 희미하고 순간적이지만 고감도 비디오카메라를 이용하면 지상 관측이 가능하다고 알려져 있다. 2013년 10월에 발사된 NASA의 Lunar Atmosphere and Dust Environment Explorer(LADEE)가 달 주위의 대기 및 먼지 환경을 측정하고 있는 동안 전 세계 지상관측 네트워크도 달 표면 충돌 감시 관측을 수행 중에 있다. 충남대학교에서도 LADEE 미션 시작인 10월부터 16인치 망원경에 고감도 비디오카메라를 장착한 시스템을 구성하여 매달 초승부터 상현까지 관측을 진행해왔다. 관측은 달 표면의 어두운 영역을 초당 30프레임으로 녹화하였으며, NASA에서 제공한 LunarScan 소프트웨어를 사용하여 섬광을 찾는 분석 작업을 수행하였다. 현재까지 약 70시간 동안 관측하고 분석하여 충돌 섬광 후보를 발견하였다. 본 발표에서 달 충돌 섬광 관측시스템에 대해 소개하고, 관측된 충돌 섬광 후보의 분석 결과를 제시할 것이다.
-
태양 빛이 달 표면에서 반사될 때는 일부가 편광 된다. 이러한 월면 편광은 달 표토층 입자의 크기와 성분을 알려주는 중요한 정보이나, 이전의 달 궤도선에서는 한 번도 탐사되지 않았다. 또한 달 탐사임무에 있어 틈새시장인 월면 특이지역 연구에도 편광이 중요한 기초자료를 제공한다는 사실이 최근 밝혀졌다. 이에 본 연구진은 한국형 달 탐사선을 위한 우리나라 고유의 창의적 과학 임무 중 하나로 <월면 다파장 편광 탐사>를 제안하며, 이러한 탐사에 필요한 기초연구 및 선행연구를 수행하고 있다. 본 발표에서는 우리가 수행한 지상으로부터의 다파장 편광 관측 결과를 보고하고, 최근 시작한 랩실험과 컴퓨터 시뮬레이션 실험에 대해 소개할 것이다.
-
Radiative transfer programs to simulate the 3-micron auroral
$CH_4$ emissions of Jupiter have been developed. The formalism of the radiative transfer calculations including the thermal, fluorescent, and auroral emissions of the$CH_4$ bands for an atmospheric layer having an optical depth of${\tau}_v$ is given by:${\mu}dI_v/d{\tau}_v=I_v-{\varpi}_v{^*}J_v(1-{\varpi}_v{^*})B_v-{\varpi}{^*}F_{ov}{e}{x}{p}(-{\tau}_v/{\mu}_o)4{\pi}-hv{\varpi}{^*}V/4{\pi}$ where${\varpi}_v{^*}$ is the single scattering albedo of$CH_4$ consisting of Einstein A coefficient and collisional deexcitation rate. Other terms are usual radiative transfer parameters appearing in textbooks including the terms for scattered${\varpi}_v{^*}J_v$ , thermal$(1-{\varpi}_v{^*})B_v$ , and attenuated solar radiations$F_{ov}$ at the certain atmospheric layer. For auroral excitations, we include V, which is the number of excited states per$cm^3$ persec by auroral particle bombardments. We apply this formalism to the high-resolution spectra of the auroral regions observed with GNIRS/Gemini North, and will present preliminary results for the 3 micron auroral processes of Jupiter. -
Kim, Myung-Jin;Choi, Young-Jun;Moon, Hong-Kyu;Byun, Yong-Ik;Brosch, Noah;Kaplan, Murat;Kaynar, Suleyman;Uysal, Omer;Guzel, Eda;Behrend, Raoul;Yoon, Joh-Na;Mottola, Stefano;Hellmich, Stephan;Hinse, Tobias C.;Eker, Zeki;Park, Jang-Hyun 66.2
We carried out photometric observations of Maria family asteroids during 134 nights spanning from July 2008 to May 2013, and derived synodic rotational periods for 51 objects including obtained periods of 34 asteroids for the first time. In this study, we found that there is a significant excess of fast and slow rotators. The one-sample Kolmogorov-Smirnov test confirms that the spin rate distribution is not consistent with the Maxwellian at a 92% confidence level. From the correlations between rotational period, amplitude of lightcurve, and size, we conclude that rotational properties of Maria family have been changed considerably by the non-gravitational force such as the Yarkovsky and the YORP effect. Using the lightcurve inversion method, we successfully determined the pole orientation for the 13 Maria members, and found the excess of prograde objects versus retrograde with a ratio ($N_p/N_r$ ) of 3. This implies that retrograde rotators could have been ejected by the 3:1 resonance to the inner Solar System since the generation of Maria family. We estimate that approximately 37 - 75 kilometer-sized Maria asteroids have entered to near-Earth space every 100 Myr. -
Comets are mysterious travelers from outer Solar System. It is considered that comets loose their subsurface ice once they were injected into a snow-line of the solar system, at the same time, develop adiathermic dust layers on the surface in a time scale of ~10,000 years. They eventually become inactive (see also the presentation by Yoonyoung Kim et al.). Optical similarity between comets and asteroids in comet-like orbits suggests the existence of such dormant or inactive comets supporting the evolutionary scenario. However, unforeseen accidents cast a misgiving to modify the stereotype. A periodic comet, 17P/Holmes, is known as comet with very low activity before 2007. However, the comet suddenly exhibited an outburst in 2007 October, which is known as the most energetic cometary outburst since the beginning of modern astronomy. On the other hand, another periodic comet, P/2010 V1, was not known before 2010 November probably because of low activity and discovered while it experienced outburst. We investigated the time-evolution of the magnitudes and the morphological developments based on the dynamical theory of dust grains, and derived the energy per unit mass of ~10,000 J/kg. From these observational evidences, we suggest that crystallization of buried amorphous ice (even in low-activity comets) can be responsible for the dramatic cometary outbursts.
-
Comet nucleus is a solid body consisting of dark dust grains and ice. Cometary volatiles sublimate from subsurface layer by solar heating, leaving behind large dust grains on the surface. Eventually, the appearance could turn into asteroidal rather than cometary. It is, therefore, expected that there would be "dormant comets" in the list of known asteroids. Our research group has undertaken the research on the population of dormant comets. We applied a brand-new asteroidal catalog compiled from data garnered by three infrared astronomical observatories, AKARI, IRAS and WISE. We extracted objects which have comet-like orbits on the basis of their orbital properties (Tisserand parameters with respect to Jupiter, TJ, and aphelion distance, Q). We found that (1) there are a considerable number (>100) of asteroids in comet-like orbits, and (2) 80% of them have low albedo consistent with comets. This result suggest that these low albedo objects could be dormant comets. One unanticipated finding is that 20% of asteroids in comet-like orbit have high albedo similar to S-type asteroids. It is difficult to explain the population of S-type asteroids in comet-like orbits by the classical mechanics theory. We further found that these high-albedo objects are small (D < 2 km) bodies distributed in near-Earth space. We suggest that such high-albedo, small, near-Earth asteroids are susceptible to Yarkovsky effect and injected into comet-like orbits.
-
We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual channel imaging spectrograph (S-channel 900-1150
${\AA}$ , L-channel 1350-1710${\AA}$ , and${\lambda}/{\Delta}{\lambda}$ ~ 550 for both channels) with large image fields of view (S-channel$4.0^{\circ}{\times}4.6^{\prime}$ , L-channel$7.5^{\circ}{\times}4.3^{\prime}$ , and angular resolution ~$5-10^{\prime}$ ) optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) were made in two campaigns during its perihelion approach between May 8 and 15, 2004. Based on the scanning mode observations in the wavelength band of 1400-1700${\AA}$ , we have constructed an image of the comet with an angular size of$5^{\circ}{\times}5^{\circ}$ , which corresponds to the central coma region. Several important fluorescence emission lines were detected including S I multiplets at 1429 and 1479${\AA}$ , C I multiplets at 1561 and 1657${\AA}$ , and the CO$A^1{\Pi}-X^1{\Sigma}^+$ Fourth Positive system; we have estimated the production rates of the corresponding species from the fluxes of these emission lines. The estimated production rate of CO was$Q_{CO}=(2.65{\pm}0.63){\times}10^{28}s^{-1}$ , which is 6.2-7.4% of the water production rate and is consistent with earlier predictions. The average carbon production rate was estimated to be$Q_C={\sim}1.59{\times}10^{28}s^{-1}$ , which is ~60% of the CO production rate. However, the observed carbon profile was steeper than that predicted using the two-component Haser model in the inner coma region, while it was consistent with the model in the outer region. The average sulfur production rate was$Q_S=(4.03{\pm}1.03){\times}10^{27}s^{-1}$ , which corresponds to ~1% of the water production rate. -
내행성계의 행성간 공간에는 행성간 티끌이 편재하고 있다. 이 행성간 티끌의 산란이나 열복사로 인하여 황도광이 관측된다. 그러나 빛에 의한 끌림힘이나 행성의 중력적 섭동으로 인하여 행성간 공간의 티끌은 수백만 ~ 수천만 년 이내에 사라질 수 밖에 없다. 따라서 행성간 공간에 티끌을 공급하는 티끌의 공급원이 지속적으로, 또는 최근에 존재하였음이 확실하다. 본 연구에서는 행성간 티끌의 공급원을 밝히기 위하여 황도광의 광학적 특성을 이용하였다. 우리는 혜성, C형 소행성, S형 소행성, X형 소행성의 반사도와 스펙트럼을 합성하여
$4600{\AA}$ 에서 측정된 황도광의 반사도, 연속 스펙트럼과 비교하였다. 큰 비중의 티끌이 혜성에서 기인하고 나머지가 C형 소행성과 S형 소행성에서 기인한 모형을 통하여 황도광의 광학적 특성을 설명할 수 있었다. 우리의 모형은 독립적으로 측정된 기존의 황도광 분광 관측 결과와 상합한다. -
We perform an MHD simulation combined with observed vector field data to clarify an eruptive dynamics in the solar flare. We first extrapolate a 3D coronal magnetic field under a Nonlinear Force-Free Field (NLFFF) approximation based on the vector field, and then we perform an MHD simulation where the NLFFF prior to the flare is set as an initial condition. Vector field was obtained by the Soar Dynamics Observatory (SDO) at 00:00 UT on February 15, which is about 90 minutes before the X2.2-class flare. As a result, the MHD simulation successfully shows an eruption of strongly twisted lines whose values are over one-turn twist, which are produced through the tether-cut magnetic reconnection in strongly twisted lines of the NLFFF. Eventually, we found that they exceed a critical height at which the flux tube becomes unstable to the torus instability determining the condition that whether a flux tube might escape from the overlying field lines or not. In addition to these, we found that the distribution of the observed two-ribbon flares is similar to the spatial variance of the footpoints caused by the reconnection of the twisted lines being resided above the polarity inversion line. Furthermore, because the post flare loops obtained from MHD simulation well capture that in EUV image taken by SDO, these results support the reliability of our simulation.
-
To estimate free magnetic energy stored in an active region is a key to the quantitative prediction of activity observed on the Sun. This energy is defined as an excess over the potential energy that is the lowest energy taken by a magnetic structure formed in the solar atmosphere including the solar corona. It is, however still difficult to derive the configuration of a coronal magnetic field only by observations, so we have to use some observable quantity to estimate free magnetic energy. Recently, by performing a coordinated series of three-dimensional magnetohydrodynamic simulations of an emerging flux tube that transfers intense magnetic flux to the solar atmosphere we have found an universal power-law relation between free magnetic energy and emerged magnetic flux, the latter of which is a possibly observed quantity. We further investigate what causes this relation through a comparison with a model of linear force-free field.
-
We study the origin and acceleration mechanism of solar energetic particles (SEPs), which are one of the major causes of hazardous impacts in the space weather. By adopting the velocity dispersion to the multi-channel energy band observations from SOHO/ERNE and Wind/3DP, we estimate the onset time for each energy band and investigate coronal structure and CME's dynamics associated with the SEPs. Through this study we will find clues to answer the questions about the origin and acceleration of SEPs as well as their associated with flare and/or CMEs. We will apply our findings to improve the forecasting system of the solar radiation storms.
-
An, Jun-Mo;Inoue, Satoshi;Magara, Tetsuya;Lee, Hwanhee;Kang, Jihye;Kim, Kap-Sung;Hayashi, Keiji;Tanaka, Takashi 70.2
We developed a three-dimensional (3D) magnetohydrodynamic (MHD) simulation code to reproduce the structure of a solar wind and the propagation of a coronal mass ejection (CME) through it. This code is constructed by a finite volume method based on a total variation diminishing (TVD) scheme using an unstructured grid system (Tanaka 1994). The grid system can avoid the singularity arising in the spherical coordinate system. In this study, we made an improvement of the code focused on the propagation of a CME through a solar wind, which extends a previous work done by Nakamizo et al. (2009). We first reconstructed a solar wind in a steady state from physical values obtained at 50 solar radii away from the Sun via an MHD tomography applied to interplanetary scintillation (IPS) data (Hayashi et al. 2003). We selected CR2057 and inserted a spheromak-type CME (Kataoka et al. 2009) into a reconstructed solar wind. As a result, we found that our simulation well captures the velocity, temperature and density profiles of an observed solar wind. Furthermore, we successfully reproduce the general characteristics of an interplanetary coronal mass ejection (ICME) obtained by the Helios 1/2 spacecraft (R. J. FORSYTH et al. 2006). -
To investigate physical properties of Solar pores, we use SDO/HMI data from 2010 to 2013. For this, we select single and isolated pores from the active region (Axx, Bxo, Bxi and Bxc-type) listed in Solar Region Summary. Pore is defined by connected pixels satisfying the intensity threshold from pixel of minimum intensity. We try to obtain area, intensity, magnetic field, and Doppler velocity of pores from HMI data. After removing the effects of orbital motion of the SDO satellite and differential rotation of the Sun, we identify that significant daily variations of Doppler velocity with non-zero ordinates still remain in the umbral region, and the artifact is quite dependent on the strength of magnetic field and radial component of velocity of SDO satellite. In this study we develope empirical model to remove the artifact. A preliminary result on the elimination of the artifact will be presented.
-
Cho, Kyungsuk;Bong, Suchan;Lim, Eunkyung;Kim, Yeonhan;Park, Youngdeuk;Yang, Heesu;Chae, Jongchul;Yurchyshyn, Vasyl 71.2
For better understanding of the physics of pores, we have investigated horizontal and vertical motions of plasma in a pore obtained on 2013 August 24 by using high time and spatial resolution data from the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST). We infer the LOS velocity by applying the bisector method to the wings of Ca II 8542${\AA}$ profile, and inspect oscillations of the intensity and the LOS velocity in the pore. In this presentation, we discuss the physical implications of our results in view of a connection between LOS and horizontal plasma flows in a concentrated magnetic flux. -
In this study, we extrapolate a nonlinear force-free field (NLFFF) from an observed photospheric magnetic field to understand the three-dimensional (3D) coronal magnetic field producing a huge solar flare. The purpose of this study is to develop a NLFFF extrapolation code based on the so-called MHD relaxation method and check how accurately our model reconstructs a coronal field. Furthermore, we apply it to the photospheric magnetic field obtained by Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory (SDO) to reconstruct a 3D magnetic structure. We first investigate factors in controlling the accuracy of our NLFFF code by using a semi-analytical solution obtained by Low & Lou (1990). To extend a work done by Inoue et al. (2014), we apply various boundary conditions at the side and top boundaries in order to make our solution close to a realistic solution. As a consequence, our solution has a good accuracy when three components of a reference field are all fixed at the boundaries. Furthermore, it is also found that our solution is well matched to the Low & Lou solution in the central area of a simulation domain when the three components of a potential field are fixed at side and top boundaries (this approach is close to a realistic solution). Finally, we present the 3D coronal magnetic field producing an X 1.5-class flare in the active region 11166 through the extrapolation from SDO/HMI.
-
We have made a comparison of three cone models (an asymmetric cone model, an ice-cream cone model, and an elliptical cone model) in terms of space weather application. We found that CME angular widths obtained by three cone models are quite different one another even though their radial velocities are comparable with one another. In this study, we investigate which cone model is proper for halo CME morphology and whether cone model parameters are similar to observations. For this, we look for CMEs which are identified as halo CMEs by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 June when two spacecraft were separated by
$90{\pm}10$ degrees. From geometrical parameters of these CMEs such as their front curvature, we classify them into two groups: shallow cone (5 events) and near full-cone (28 events). Noting that the previous cone models are based on flat cone or shallow cone shapes, our results imply that a cone model based on full cone shape should be developed. For further analysis, we are estimating the angular widths of these CMEs near the limb to compare them with those from the cone models. This result shows that the angular widths of the ice-cream cone model are well correlated (CC = 0.81) with those of observations. -
We have investigated a supra-arcade structure associated with an M1.6 flare, which occurred on the south-east limb in the 4th of November 2010. It is ob- served in extreme ultraviolet (EUV) with the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), microwaves at 17 and 34 GHz with the Nobeyama Radioheliograph (NoRH), and soft X-rays of 8-20 keV with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Interestingly, we found exceptional properties of the supra-arcade thermal plasma from the AIA 131 A and the NoRH: 1) plasma upflows along large coronal loops and 2) enhancing microwave emission. RHESSI detected two soft X-ray sources, a broad one in the middle of supra-arcade structure and a bright one just above the flare-arcade. We estimated the number density and thermal energy for these two source regions during the decay phase of the flare. In the supra-arcade source, we found that there were increases of the thermal energy and the density at the early and the last stages, respectively. On the contrary, the density and thermal energy of the source on the top of the flare-arcade decreases throughout. The observed upflows imply that there is continuous energy supply into the supra- arcade structure from below during the decay phase of the flare. It is hard to be explained by the standard flare model in which the energy release site is located high in corona. Thus, we suggest that the potential candidate as the energy source for the hot supra-arcade structure is the flare-arcade which has exhibited a predominant emission throughout.
-
We have presented a classic two-ribbon filament eruption occurred in the east side of NOAA active region 11850 at 21:00 UT on 29 September 2013. Interestingly, this filament eruption was not accompanied by any flares and just there was a slight brightening in X-rays, C1.2, associated with the eruption. An accompanying huge CME was appeared at 22:12 UT in the LASCO C2 field of view and it propagates into the interplanetary space with a speed of about 440 km/s. And the related solar proton event (S2) started at 05:05 UT and peaked at 20:05 UT on 30 September 2013. The CME arrival was recorded by the ACE spacecraft around 01:30 UT on 2 October 2013. Around the CME arrival time, the solar-wind speed reached at about 640 km/s and IMF Bz showed southward component (-27 nT). Finally, the filament eruption and the CME cause geomagnetic storm (G2) at 03:00 UT on 2 October 2013. We described the detailed evolution of the filament eruption and its related phenomena such as CME, proton event, geomegnetic storm and so on. In addition, we will discuss about the activation mechanism of the filament eruption without flares.
-
Sunspot penumbrae show supersonic downflow patches along the periphery. These patches are believed to be the return channels of the Evershed flow. There was previous study to investigate their structure in detail using Hinode SOT/SP observations (M. van Noort et al. 2013) but their data sample was only two sunspots. To make general description it needs to check more sunspot sample. We selected 242 downflow patches of 17 sunspots using Hinode SOT/SP observations from 2006 to 2012. Height-dependent maps of atmospheric parameters of these downflows was produced by using HeLix which was height dependent LTE inversion code of Stokes profiles. The inversion code at high resolution allows for the accurate determination of small scale structures. The recovered atmospheric structure of three layers indicates that regions with very high downflow velocities contain very strong magnetic fields reaching up to 7kG. The higher downflow velocity patches have bigger patch size. Magnetic fields of downflow patches are more vertical while penumbra shows horizontal field and neighbor of downflow patches have opposite polarity. Temperature of downflow patches at highest layer have more strong value than penumbra at deepest layer. The direction of velocity of downflow patches at highest layer have two branches. These result shows that we can expect some heating precess in the middle of layer.
-
We have developed a set of daily solar flare peak flux forecast models using the multiple linear regression (MLR), the auto regression (AR), and artificial neural network (ANN) methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray flare peak flux, weighted total flux
$T_F=1{\times}F_C+10{\times}F_M+100{\times}F_X$ of previous day, mean flare rates of a given McIntosh sunspot group (Zpc), and a Mount Wilson magnetic classification. We compute the hitting rate that is defined as the fraction of the events whose absolute differences between the observed and predicted flare fluxes in a logarithm scale are${\leq}$ 0.5. The best three parameters related to the observed flare peak flux are as follows: weighted total flare flux of previous day (r=0.5), Mount Wilson magnetic classification (r=0.33), and McIntosh sunspot group (r=0.3). The hitting rates of flares stronger than the M5 class, which is regarded to be significant for space weather forecast, are as follows: 30% for the auto regression method and 69% for the neural network method. -
We investigate the solar flare and CME occurrence rate and probability depending on sunspot class and its area change. These CMEs are front-side, partial and full halo CMEs associated with X-ray flares. For this we use the Solar Region Summary(SRS) from NOAA, NGDC flare catalog, and SOHO/LASCO CME catalog for 16 years (from January 1996 to December 2011). We classify each sunspot class into two sub-groups: "Large" and "Small". In addition, for each class, we classify it into three sub-groups according to sunspot class area change: "Decrease", "Steady", and "Increase". In terms of sunspot class area, the solar flare and CME occurrence probabilities noticeably increase at compact and large sunspot groups (e.g., 'Fkc'). In terms of sunspot area change, solar flare and CME occurrence probabilities for the "Increase" sub-groups are noticeably higher than those for the other sub-groups. For example, in case of the (M+X)-class flares of 'Dkc' class, the flare occurrence probability of the "Increase" sub-group is three times higher than that of the "Steady" sub-group. In case of the 'Eai' class, the CME occurrence probability of the "Increase" sub-groups is five time higher than that of the "Steady" sub-group. Our results demonstrate statistically that magnetic flux and its emergence enhance solar flare and CME occurrence, especially for compact and large sunspot groups.
-
코로나그래프는 우주환경의 변화의 주요원인인 코로나물질방출을 관측할 수 있는 핵심우주관측기이다. 지난 약 18여년간 운용되어 왔던 SOHO 위성의 LASCO (Large Angle and Spectrometric Coronagraph) 탑재체의 노후화로 인한 운용 종료를 앞두고 있어 새로운 코로나그래프의 개발이 시급하다. 본 연구에서는 우주환경예보의 활용과 태양코로나와 코로나물질 방출에 관한 새로운 과학적 발견을 위해 적합한 위성용 코로나그래프의 개발방향을 제안하고 국제우주정거장이나 우리나라 위성을 활용하여 개발하는 경우에 극복해야 할 현실적인 기술 한계와 극복 방안에 대해 토의한다.
-
Gravitational waves predicted by the general relativity almost 100 years ago have been implicated indirectly only by astrophysical observations such as the orbital evolution of binary pulsars. The advanced detectors of gravitational waves will become operational in a few years and they are expected to make direct detection of gravitational wave signal coming from merging of binaries composed of neutron stars or stellar mass black holes from external galaxies. Korean Gravitational Wave Group (KGWG) is contributing to the possible detection through the data analysis of LIGO and Virgo. We summarize the perspectives of the gravitational wave research and the impacts of the detection in the near future in astronomy and astrophysics.
-
Numerical relativity is one of the crucial tools to theoretically probe systems of strong gravity such as compact binary coalescences and gravitational collapses. Understandings of such systems and gravitational wave forms extracted have been used for implementing data analysis pipelines on ground based gravitational wave observation experiments such as LIGO, Virgo and KGRA currently undergoing. In this talk, brief reviews and perspectives will be given for numerical studies on binary black holes.
-
Pulsar binaries in tight orbits are considered to emit strong gravitational waves (GWs) during the last stage of their coalescences. They form a subset of compact binary mergers, which consists of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). One of the most famous example of 'merging' pulsar binaries is the Hulse-Taylor pulsar (PSR B1913+16) discovered in 1974 by Russell Hulse and Joseph Taylor. About ten NS-NS and several tens of NS-WD binaries are known in our Galaxy. Merging binaries are rare and only a few NS-NS and NS-WD have been discovered to date. A pulsar with a black hole companion is also theoretically expected, but there is yet no detection. Within several years, direct detections of GWs from compact binary mergers will be made by laser interferometers. This will pave a way to study physics of compact binaries that cannot be reached by electromagnetic waves (EM). Pulsar binaries are of particular interest as we can use both EM and GW to probe these systems. In this talk, we present a brief overview on the Galactic pulsar populations and discuss their implications for GW detection.
-
Many techniques for data analysis also based on gaussian noise assumption which is often valid in various situations. However, the sensitivity of gravitational wave searches are limited by their non-gaussian and non-stationary noise. We introduce various on-going efforts to overcome this limitation in Korean Gravitational Wave Group. First, artificial neural networks are applied to discriminate non-gaussian noise artefacts and gravitational-wave signals using auxiliary channels of a gravitational wave detector. Second, viability of applying Hilbert-Huang transform is investigated to deal with non-stationary data of gravitational wave detectors. We also report progress in acceleration of low-latency gravitational search using GPGPU.
-
GRBs are the most energetic and very frequent electromagnetic events among known astronomical phenomena in the universe. The progenitor of GRBs is believed as one of most promising sources of gravitational waves. Thus, detection of gravitational wave signals associated with GRBs will be a fascinating issue. In this presentation, we describe how we search gravitational waves related to GRBs by using LIGO and Virgo data.
-
A few years from now, gravitational wave (GW) detectors of LIGO and VIRGO consortiums are expected to reach the sensitivity necessary to detect GW signals from astronomical sources. Identification of the counterparts to the GW sources in electromagnetic wave is very important, since the localization of the GW signals is going to be very poor (~1000
$deg^2$ ) for the first detections and the nature of the GW-emitting sources will be uncertain with the GW detection only. In this talk, we will discuss possible astronomical sources that could be responsible for the first GW signals, and outline our current efforts to do follow-up observation of GW sources in collaboration with LIGO/VIRGO groups. -
Kepler-47 is the first multi-body circumbinary planetary system detected by the Kepler space telescope. The two planets were detected by the transit method. In the discovery paper the authors report about the presence of an additional transit-like signal in their dataset which cannot be explained by a four-body (binary + 2 planets) system. Therefore it is likely that the unexplained signal could be due to a third planet. In this talk I will present recent results from a dynamical investigation of the five-body system (binary + 3 planets). We have applied the MEGNO technique to detect regions of quasi- or near quasi-periodic orbits of a hypothetical third planet. Quasi-periodic regions exists for a third planet and the long-term stability has been tested. Although the existence of a third planet is most likely to be confirmed from transit photometry we calculate transit-timing variation (TTV) signals due to the third planet which also can be used to infer its presence.
-
To figure out the effect of rotation on the final mass of Pop III stars, 1D stellar evolution simulations of the evolution of mass-accreting protostars are performed, with zero metalicity and high constant mass accretion rates. The protostar reaches the Keplerian rotation very soon after the onset of mass accretion, but it may continue mass accretion via angular momentum transport induced by viscous stress or magnetic field. However, as the accreting star evolves, the envelope expands rapidly when the total mass reaches
$5{\sim}6M_{\odot}$ and the corresponding Eddington factor sharply increases. Strong radiative pressure with rotation imposes different criteria for breakup at the stellar surface, and the so-called 'critical rotation (${\Omega}{\Gamma}$ -limit)' is reached. As a result mass accretion rate has to be significantly lowered. This implies that characteristic masses of Pop III stars would be significantly lowered than the previous expectation. -
The presence of multiple populations is now well-established in most globular clusters (GCs) in the Milky Way. In light of this progress, here we suggest a new model explaining the origin of the Sandage period-shift and the difference in mean period of type ab RR Lyrae variables (
) between the two Oosterhoff groups. In our models, while matching the observed color-magnitude diagrams, the difference in is naturally reproduced as the instability strip is occupied by different subpopulations with increasing metallicity. The instability strip in the metal-poor group II clusters is populated by second generation stars (G2) with enhanced helium and CNO abundances, while the RR Lyraes in the metal-rich group I clusters are mostly produced by first generation stars (G1) without these enhancements. This population shift within the instability strip can create the observed period-shift between the two groups, since both helium and CNO abundances play a role in increasing the period of RR Lyrae variables. The presence of more metal-rich Oosterhoff group III clusters having RR Lyraes with longest can also be reproduced, if more helium-rich third generation stars (G3) are present in these GCs. -
지상에서 천체 분광관측을 하면 천체 스펙트럼에 대기 흡수선이 겹쳐 나타나기 때문에 이를 제거해주어야 한다. 대기 흡수선은 주로 적외선 영역에 많이 나타나고, 주로 H2O, O2, CO2, O3, CH4 등의 분자에 의하여 생긴다. 대기 흡수선을 제거하기 위하여 조기형 별을 관측하여 그 스펙트럼으로 천체스펙트럼을 나누어주는 방법이 널리 이용된다. 본 연구에서는 인공 흡수선 스펙트럼을 계산하여 대기 흡수선을 제거하는 방법을 소개하기로 한다. 인공 흡수선 스펙트럼 계산은 LBLRTM 코드를 이용하였으며 대기모델은 MIPAS를 채택하였다. 이렇게 계산한 인공 스펙트럼을 실제 관측된 대기 흡수선에 맞추기 위하여 가우시안 라인 프로파일을 이용하고 파장 눈금을 조정해 준다. 이 과정에서 대기 흡수선을 정밀 시선속도 측정을 위한 파장 표준으로 이용할 수 있다.
-
Open clusters consisting of a co-spatial and coeval population with a similar chemical composition are a superb astrophysical test bed in both stellar and galactic astronomy. We introduce not only several scientific issues relating to these objects but also comprehensive studies of the two young open clusters Westerlund 1 and IC 1848 formed in extremely different star-forming conditions. Westerlund 1 is known as the most massive starburst cluster in the Galaxy. Located in the Scutum-Centaurus spiral arm, the cluster is relatively close to the Galactic Center. The apparent surface density is very high. On the other hand, IC 1848 is a core cluster within the large-scale star-forming region W5 lying in the Perseus arm. Unlike Westerlund 1, IC 1848 with a putatively low metallicity exhibits a low surface density. We present the fundamental parameters of those young clusters, such as reddening, distance, and age, obtained from the broadband photometric analysis. The stellar initial mass function (IMF) of the clusters is used to investigate the effects of the different star-forming conditions on the star formation activity. With the results of previous studies for several young open clusters, our preliminary results support a possibility that star formation activity may be affected by the environmental factors or the initial condition of natal clouds. In addition, we shortly discuss the age scale and spread of pre-main sequence stars to understand the formation processes of star clusters.
-
We present the two high resolution spectra of the symbiotic star V1016 Cygni obtained with the Bohyunsan Optical Echelle Spectrograph in 2003 and 2005, from which we note the existence of the broad emission feature at 4881
${\AA}$ . We propose that this broad feature is formed from Raman scattering of Ne$VII{\lambda}973$ by atomic hydrogen. Thus far, the detection of Raman scattered lines by atomic hydrogen is limited to O$VI{\lambda\lambda}1032$ , 1038 and He$II{\lambda\lambda}940$ , 972 and 1025. We perform Monte Carlo simulations to fit the Raman scattered Ne$VII{\lambda}4881$ to investigate the basic spectroscopic properties concerning Ne$VII{\lambda}973$ . -
Hur, Hyeonoh;Park, Byeong-Gon;Sung, Hwankyung;Lim, Beomdu;Chun, Moo-Young;Bessell, Michael S.;Sohn, Sangmo Tony 84.1
We report the spatial distribution of early-type stars and pre-main-sequence (PMS) stars around the starburst type young open cluster Westerlund 2. The early-type were selected from UBVI photometric data, while the PMS members were identified from their X-ray emission and mid-infrared excess. The northern clump of the cluster is composed mainly of PMS stars detected in both optical and X-ray and seems to be coeval to the cluster, while PMS stars in the bright bridge region are highly obscured in optical wavelength. The bright bridge appear to be an on-going star forming region possibly triggered by the strong radiation field from both sides-massive stars in Westerlund 2 and WR 20b. We also found that there are many early-type stars not only in the cluster but also farther from the cluster up to several times of the cluster radius. These early-type stars are well aligned from east to southwest of the cluster. We conclude these early-type stars are members of an OB association in the RCW 49 nebula. This report indicates there is a complex star formation history in Westerlund 2 and its surrounding H II region, the RCW 49 nebula. -
The intermediate polar V1323 Her = RXS J180340.0+401214 returned from its faint state 19.4-20.5 mag (mean brightness during the run, the instrumental system close to R or clear filter) (vsnet-alert 16958). On March 1, 2014, the brightness was 17.50 (clear filter) and next night 17.8 (R). During previous observations on January 24, the object was 19.6. We reported this findings to vsnet-alert 16958 and to The Astronomer's Telegramm (ATel #5944). The characteristics of the runs obtained before/after a switch between the high and low states will be presented.
-
K-GMT Science Group (KGSG) is actively promoting community-wide science operations for the GMT era in 2020's. These include K-GMT Science Program, K-GMT Science White Paper Initiative, K-GMT Summer School, and science operation of IGRINS. We will introduce the current status and the plan for 2014 of the various KGSG activities and invite the participation of the community members.
-
The origin of the Korean Screen Planisphere with both Traditional and New Star-Charts, made by Korean Astronomers in the Royal Astronomical Bureau of the Joseon Dynasty by adopting the knowledge of the European astronomy, is investigated by analyzing its inscriptions and star charts. The considerations on both the changes in notations or representations of names of asterisms and the naming taboos used in the Old-style planisphere imply that the star-chart is originated from either the Sukjong-Stele-Replica of Cheonsang-Yeolcha-Punyajido(天象列次分野之圖). The New style planisphere is just the reproduction of Huangdao-congxingtu (黃道總星圖), with the exception of the non-Chinese-traditional stars. The Huangdao-congxingtu was made in 1723 CE by Ignatius K
$\ddot{o}$ gler who was a Jesuit missionary and worked for the Bureau of Astronomy (欽天監) in the Qing Dyansty. I find that the star chart was imported in 1742 CE from the Qing by An Gukrin (安國麟) who was an astronomer in the Royal Astronomical Bureau of Joseon. The chart became model for the screen star-chart made in 1743 CE and now housed in Bopju temple. I found that the inscriptions are extracted from the sentences in both Xinzhi Lingtai Yixiangzhi (新製靈臺儀象志) and Qinding Yixiangkaocheng (欽定儀象考成). Korean historical records in either Daily Records of the Royal Secretariat of the Joseon Dynasty (承政院日記) or Annals of the Joseonn Dynasty (朝鮮王朝實錄) show that Xinzhi Lingtai-Yixiangzhi was imported from the Qing Dynasty in 1708 CE, and the Qinding Yixiangkaocheng was imported in 1766 CE. Thus, the Korean Screen Planisphere with both Old and New Star-charts was certainly made after 1766 CE. -
흠경각루(欽敬閣漏)는 1438년 장영실이 제작한 자동물시계로 천상의 모습을 재현한 천문시계의 역할을 갖추었다. 흠경각(欽敬閣)은 세종의 통치 철학을 세우는 중요한 공간이었다. 이곳에 설치한 흠경각루는 가산(假山) 외부에 빈풍사시의 풍경을 그려서 농사짓는 백성들의 어려움을 살필 수 있도록 하였고, 의기(倚器)를 설치하여 기울어진 그릇을 권력에 비유하여 조심하도록 하였다. 또한 12지신(支神)과 12명의 옥녀(玉女), 4신(청룡, 백호, 주작, 현무)과 4명의 옥녀, 그리고 종 북 징을 타격하여 시간을 알려주는 다양한 시보인형들과 태양운행을 살펴 볼 수 있는 종합적 연출이 가미된 당시의 첨단적 시계였다. 이러한 흠경각루의 작동은 가산 내부에 위치한 물시계와 수차에 의해서 발생된다. 물시계로부터 얻어지는 일정량의 물에 의해 수차가 회전하고, 천형장치를 활용해 회전속도를 제어할 수 있었다. 본 연구에서는 흠경각루의 동력발생과정을 유기적으로 살펴 볼 수 있도록 개념 설계를 실시하였다. 또한 3D 모델링과 기초설계도를 작도하여 실험에 활용할 수 있는 수차제어시스템 모형을 제작하였다.
-
양경규일의(兩景揆日儀)는 세 개의 목판을 이용하여 시간과 계절을 알 수 있는 조선후기에 사용한 해시계이다. 이상혁(李尙赫)과 남병철(南秉哲, 1817~1863)은 각각 "규일고(揆日考)"와 "의기집설(儀器輯說)" "양경규일의(兩景揆日儀)"에 이에 대한 설명과 제작법 등을 기술하였다. 현존하는 양경규일의의 유일한 유물은 헌종 15년(1849)에 제작한 것으로 고려대학교박물관에 소장되어 횡표입표일구(橫表立表日晷)라는 이름으로 전시되어 있다. 그러나 아직 세부적인 검토와 연구가 미진하여 많은 문헌과 인터넷 사이트에는 잘못된 설명이 제시되고 있다. 문헌기록을 살펴보면 계절이 표시된 2개의 입판(立版)과 또 다른 2개의 횡판(橫版)으로 구분되어 있다. 각 절후는 13개 곡선의 절후선 사이에 초후(初候) 중후(中候) 말후(末候)로 3등분하여 모두 37개의 절후선이 그려져 있고, 12시(時) 시간을 알리는 표시가 있다. 우리는 이상혁과 남병철의 문헌에 대한 세세한 분석을 통해 과학적 원리분석과 복원 설계 등을 진행하고, 실제 유물을 재현하여 천문학적 검증작업을 통해 과학적 규명을 수행하였다. 아울러 이와 유사한 동서양의 해시계와 서로 비교하였다.
-
국립고흥청소년우주체험센터는 2014년 11월에 1,040mm의 반사망원경을 도입할 예정이다. 그 사전 준비로 천체관측소 10m돔에 150mm 굴절망원경과 1K CCD카메라를 설치하고, 이를 통합 제어할 원격관측시스템을 구축하였다. 원격으로 제어가 가능한 이 시스템은, 망원경 구동부, CCD, 돔을 제어할 수 있는 소프트웨어, 각 기기를 원격에서 조정 작동할 수 있는 장비, 기상과 하늘의 실시간 상황 및 망원경의 상태를 확인 할 수 있는 원격 모니터링 카메라 등으로 구성되어 있다. 구축 이후 M67 산개성단과 SA98 표준성 영역을 원격으로 관측하였다. 이를 통해, 관측시에 발생할 수 있는 문제점과 장애요인을 분석하여 보완 개선하였고, 시범관측으로 확보한 자료를 활용하여 관측환경을 정량화하는 중이다. 최우선 과제는 센터가 위치한 내나로도 지역의 시상정보를 검증하고 축적하는 일이다. 센터는 천체관측소에 시상 관측기 설치하여 자료를 축적하고 있다. 이 정보의 신뢰성을 확보하기 위해 150mm 굴절망원경으로 얻어진 시상정보와 비교 검증하고자 한다. 또한 이 과정에서 센터 천체관측소에 구축된 망원경으로 관측 가능한 한계등급을 얻을 수 있었고, 표준계 변환작업을 통해 1차와 2차 소광계수를 구해 보았다. 추가적으로 관측 가능한 일수를 지속적으로 기록하여, 계절별, 월별 관측 가능일 수를 조사할 예정이다.
-
경희대학교 천문대는 한국과학창의재단에서 후원하는 2013년 과학문화 민간활동 지원사업의 일환으로 "청소년, 우주를 향해 미래를 쏘다!"라는 멘토링 프로그램을 2013년 7월 23일부터 2014년 2월 28일까지 진행하였다. 본 프로그램의 참가대상은 경기지역 고등학교 1, 2학년 학생 32명이 참가하였고, 대학생 멘토 8명과 팀으로 활동하였다. 본 프로그램의 목적은 달 탐사를 주제로 한 체험프로그램을 통해 청소년들의 우주개발의 현황을 체험할 수 있는 기회를 제공하고, 체험 프로그램을 활용하여 창의력, 협동심, 자신감을 함양시키며 이공계 분야의 비젼과 진로 방향을 제시하는 것이다. 본 프로그램은 6개의 주제로 총 10회 동안 진행되었으며, 각각의 주제는 우리나라 우주개발 현장체험, 달탐사의 필요성 체험, 발사체 및 탑재체의 이해와 체험, 청소년이 바라본 우리나라 달탐사의 미래, '우주로' 체험 캠프, 최종발표회이다. 프로그램은 체험, 조사, 발표 및 토의 형식으로 진행되었다. 본 프로그램에서 기대되는 성과는 조별 활동 및 다양한 체험 실습으로 협동심 및 인성을 함양하고, 천문학/공학 분야의 전공 대학생의 멘토링으로 논리적, 체계적, 비판적인 사고를 유도하고, 학연 협력을 활용한 현장학습으로 청소년들의 이공계에 대한 흥미를 유발하고 진로 방향을 제시하며, 다양한 체험 실습 및 미래 지향적인 컨텐츠를 활용하여 천문학 및 우주과학에 대한 호기심을 자극하는 것이다. 본 프로그램에서의 최종 성과물은 기존의 달탐사와 차별적인 주제와 방법론을 고안하여 논리적이고 창의적으로 우리나라의 달탐사에 대한 방법론적인 아이디어를 유도하는 것에 중점을 두었다.
-
빛공해란, 불필요하거나 필요 이상의 인공빛이 야생 동식물들과 우리 인간들에게 악영향을 미치는 현상을 말하며, 실생활에서 인공빛 에너지를 목적에 맞지 않게 사용하는 것이 이 현상의 주요 원인이라고 할 수 있다. 빛공해 현상은 야생 동식물들에게 악영향을 주어 개체수를 감소시킬뿐만 아니라 멸종에까지 이르게 할 수 있으며, 지구 자전의 영향으로 하루 24시간 주기로 설정되어 있는 우리 인간의 생체리듬을 교란시켜 암, 비만, 당뇨병, 그리고 우울증 등과 같은 인간의 목숨을 위협할 수 있는 질병들을 일으키기도 한다. 하지만 인공빛을 목적에 맞게 올바르게 사용한다면 그로 인해 절약된 에너지와 그 비용을 다른 필요한 분야에 대체하여 사용할 수 있을 것이다. 우리는 과거의 빛공해 관련 논문과 보고서의 설문조사 결과를 통하여 빛공해로 인한 피해와 에너지 낭비 문제가 빛공해에 대한 일반 시민들의 무관심으로부터 발생하고 있다는 사실을 확인할 수 있었다. 따라서 우리는 빛공해에 대한 일반 시민들의 인식 변화를 알아보기 위하여 기존에 진행된 설문조사와 같은 문답내용의 설문조사를 올해 다시 실시하였다. 그 설문조사의 결과를 통하여 우리는 과거보다 빛공해에 대한 인식이 많이 확산되어 있다는 사실을 알 수 있었으며, 그 이유로는 최근 빛공해와 관련된 많은 뉴스 기사들과 함께 웹상의 소셜네트워크와 같은 다양한 경로의 정보매체들을 통하여 빛공해에 대한 정보를 보다 빠르고 쉽게 접할 수 있는 환경이 조성되었기 때문이라고 분석하였다. 빛공해 인식 확산에 더욱 더 기여하기 위하여 최근에 우리는 국제 어두운 밤하늘 협회 한국 지부 (Korean Chapter, International Dark-Sky Association) 인가를 받아 그 단체 이름으로 빛공해 방지 홍보 사업을 온라인과 오프라인을 통하여 보다 더 활발히 진행하기 위하여 많은 노력을 하고 있다.
-
정기적으로 발행되는 우주라이크 [WouldYouLike]의 간행물 홍보를 위해 가장 많은 사용자를 가진 소셜네트워크 서비스 (SNS) 페이스북을 이용한 천문우주학 대중화 활동에 대해 소개한다. 2012년 7월부터 페이스북 페이지를 운영하기 시작한 이후 현재까지 1만 2천여명의 팬을 가지게 되었고, 그곳에 올려지는 우주라이크의 게시글들은 평균적으로 약 4천명의 사람들에게 전달된다. 다양한 종류의 글, 그림, 사진 그리고 동영상등을 업로드하고 페이스북 사용자들의 반응을 살펴본결과 크게 세가지의 수요층이 존재하는 것을 알 수 있었다. 이번 발표를 통해 우주라이크 페이스북 페이지에서 지금까지 다루어졌던 컨텐츠들인 '이번주 천문학', '네모난 천문학' 그리고 '아름다운 천체사진 및 글귀' 등을 소개 및 분석하고 각각의 컨텐츠들이 가지고 있는 장단점에 대해서 논의한 후 SNS를 통한 천문우주학 대중화의 효과적인 개선책을 찾고자 한다.