21 cm signal from highly clustered Population III and Population II objects at high redshift

  • Published : 2014.04.10

Abstract

We present a prediction for 21cm differential brightness temperature (dTb) from a set of strongly clustered sources of Population III and II objects at high redshift, from a suite of numerical simulations of their formation and radiative processes. These objects are located inside a highly biased density environment ("Rarepeak"), which is a rare, high-density peak which extends to ~7 comoving Mpcs. We study the impact on the resulting 21 cm signal from their ultraviolet and X-ray properties. The boost of emission (dTb>0) by high-density environment, moderate leakage of X-ray photons, and strong absorption due to Lyman-alpha pumping contrive to make Rarepeak a discernible, spatially-extended (sky angle~10') object around z~15, which is found to be detectable as a single object by Square Kilometre Array (SKA) with integration time of ~[600-2000] hours. We also examine detectability of many such peaks through SKA precursors.

Keywords