DOI QR코드

DOI QR Code

The Halophilic Bacterium Paracoccus haeundaensis for the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) from Single Carbon Sources

  • Seon Min Kim (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Hye In Lee (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Seung Won Nam (Bioresources Collection and Research Team, Nakdonggang National Institute of Biological Resources) ;
  • Deok Hyeon Jin (Bioresources Collection and Research Team, Nakdonggang National Institute of Biological Resources) ;
  • Gwi-Taek Jeong (School of Marine and Fisheries Life Science, Pukyong National University) ;
  • Soo-Wan Nam (Department of Smart Bio-Health, Dong-eui University) ;
  • Brendan Burns (School of Biotechnology & Biomolecular Science, The University of New South Wales) ;
  • Young Jae Jeon (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • 투고 : 2023.05.23
  • 심사 : 2023.10.31
  • 발행 : 2024.01.28

초록

The study objective was to evaluate the potential production of polyhydroxyalkanoates (PHAs), a biodegradable plastic material, by Paracoccus haeundaensis for which PHA production has never been reported. To identify the most effective nitrogen-limited culture conditions for PHAs production from this bacterium, batch fermentation using glucose concentrations ranging from 4 g l-1 to 20 g l-1 with a fixed ammonium concentration of 0.5 g l-1 was carried out at 30℃ and pH 8.0. A glucose supplement of 12 g l-1 produced the highest PHA concentration (1.6 g l-1) and PHA content (0.63 g g -1) thereby identifying the optimal condition for PHA production from this bacterium. Gas chromatography-mass spectrometry analysis suggests that P. haeundaensis mostly produced co-polymer types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from glucose concentrations at 12 g l-1 or higher under the nitrogen-limited conditions. When several other single carbon sources were evaluated for the most efficient PHA production, fructose provided the highest biomass (2.8 g l-1), and PHAs (1.29 g l-1) concentrations. Results indicated that this bacterium mostly produced the copolymers P(3HB-co-3HV) from single carbon sources composing a range of 93-98% of 3-hydroxybutyrate and 2-7% of 3-hydroxyvalerate, whereas mannose-supplemented conditions produced the only homopolymer type of P(3HB). However, when propionic acid as a secondary carbon source were supplemented into the media, P. haeundaensis produced the copolymer P(3HB-co-3HV), composed of a 50% maximum monomeric unit of 3-hydroxyvaleric acid (3HV). However, as the concentration of propionic acid increased, cell biomass and PHAs concentrations substantially decreased due to cell toxicity.

키워드

과제정보

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1F1A1052782).

참고문헌

  1. Zhang F, Zhao Y, Wang D, Yan M, Zhang J, Zhang P, et al. 2021. Current technologies for plastic waste treatment: a review. J. Clean. Prod. 282: 124523.
  2. Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3: e1700782.
  3. Takahashi RYU, Castilho NAS, Silva M, Miotto MC, Lima AOS. 2017. Prospecting for marine bacteria for polyhydroxyalkanoate production on low-cost substrates. Bioengineering 4: 60.
  4. Rahman MH, Bhoi PR. 2021. An overview of non-biodegradable bioplastics. J. Clean. Prod. 294: 126218.
  5. Lee CW. 2018. Control of molecular weight and terminal groups of poly (3-hydroxybutyrate) in bio-synthesis. Textile Coloration and Finishing 30: 130-140.
  6. Park DH, Kim BS. 2010. Characteristics of polyhydroxyalkanoates synthesis by Ralstonia eutropha from vegetable oils. KSBB J. 25: 239-243.
  7. Azizi N, Najafpour G, Younesi H. 2017. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate(PHB) production using Cupriavidus necator. Int. J. Biol. Macromol. 101: 1029-1040.
  8. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. 2007. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants-a review. Biotechnol. Adv. 25: 148-175.
  9. Cervantes-Uc JM, Catzin J, Vargas I, Herrera-Kao W, Moguel F, Ramirez E, et al. 2014. Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. J. Appl. Microbiol. 117: 1056-1065.
  10. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. 2016. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89: 161-174.
  11. Stanley A, Mutturi S, Vijayendra S. 2021. Halophilic microorganisms as potential producers of polyhydroxyalkanoates. pp. 277-294. In Kuddus M, Roohi (eds.), Bioplastics for Sustainable Development. Springer.
  12. Zheng Y, Chen JC, Ma YM, Chen GQ. 2020. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab. Eng. 58: 82-93.
  13. Mitra R, Xu T, Xiang H, Han J. 2020. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Fact. 19: 1-30.
  14. Wei T, Fang Q. 2022. Regulating the monomer of polyhydroxyalkanoate from mixed microbial culture: with particular emphasis on substrate composition: a review. Environ. Eng. Res. 27: 210333.
  15. Policastro G, Panico A, Fabbricino M. 2021. Improving biological production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) co-polymer: a critical review. Rev. Environ. Sci. Bio/Technol. 20: 479-513.
  16. Khomlaem C, Aloui H, Oh WG, Kim BS. 2021. High cell density culture of Paracoccus sp. LL1 in membrane bioreactor for enhanced co-production of polyhydroxyalkanoates and astaxanthin. Int. J. Biol. Macromol. 192: 289-297.
  17. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54: 1699-1702.
  18. Ueda S, Matsumoto S, Takagi A, Yamane T. 1992. Synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from methanol and n-amyl alcohol by the methylotrophic bacteria Paracoccus denitrificans and Methylobacterium extorquens. Appl. Environ. Microbiol. 58: 3574-3579.
  19. Eronen-Rasimus E, Hultman J, Hai T, Pessi IS, Collins E, Wright S, et al. 2021. Sea-ice bacteria Halomonas sp. strain 363 and Paracoccus sp. strain 392 produce multiple types of poly-3-hydroxyalkaonoic acid (PHA) storage polymers at low temperature. Appl. Environ. Microbiol. 87: e0092921.
  20. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-D462.
  21. Hong K, Chen GQ, Yu PH, Zhang G, Liu Y, Chua H. 2000. Effect of C:N molar ratio on monomer composition of polyhydroxyalkanoates produced by Pseudomonas mendocina 0806 and Pseudomonas pseudoalkaligenus YS1. Appl. Biochem. Biotechnol. 84-86: 971-980.
  22. Juengert JR, Bresan S, Jendrossek D. 2018. Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and nile red staining. Bio Protoc. 8: e2748.
  23. Spurr AR. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43.
  24. Reynolds ES. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208.
  25. Saratale GD, Oh MK. 2015. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int. J. Biol. Macromol. 80: 627-635.
  26. Werker A, Lind P, Bengtsson S, Nordstrom F. 2008. Chlorinated-solvent-free gas chromatographic analysis of biomass containing polyhydroxyalkanoates. Water Res. 42: 2517-2526.
  27. Choi SS, Seo YB, Nam S-W, Kim G-D. 2021. Enhanced production of astaxanthin by co-culture of Paracoccus haeundaensis and lactic acid bacteria. Front. Mar. Sci. 7: 597553.
  28. Neoh SZ, Chek MF, Tan HT, Linares-Pasten JA, Nandakumar A, Hakoshima T, et al. 2022. Polyhydroxyalkanoate synthase (PhaC): the key enzyme for biopolyester synthesis. Curr. Res. Biotechnol. 4: 87-101.
  29. Mothes G, Ackermann JU, Babel W. 2004. Mole fraction control of poly ([R]-3-hydroxybutyrate-co-3-hydroxyvalerate)(PHB/HV) synthesized by Paracoccus denitrificans. Eng. Life Sci. 4: 247-251.
  30. Kumar P, Jun HB, Kim BS. 2018. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int. J. Biol. Macromol. 107: 2552-2558.
  31. Sheu DS, Chen WM, Yang JY, Chang RC. 2009. Thermophilic bacterium Caldimonas taiwanensis produces poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microb. Technol. 44: 289-294.
  32. Tan D, Wu Q, Chen JC, Chen GQ. 2014. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab. Eng. 26: 34-47.
  33. Choi J, Lee SY. 1999. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl. Microbiol. Biotechnol. 51: 13-21.
  34. Khomlaem C, Aloui H, Oh WG, Kim BS. 2021. High cell density culture of Paracoccus sp. LL1 in membrane bioreactor for enhanced co-production of polyhydroxyalkanoates and astaxanthin. Int. J. Biol. Macromol. 192: 289-297.
  35. Catalan AI, Malan AK, Ferreira F, Gill PR, Batista S. 2018. Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate production by a prpC mutant of Herbaspirillum seropedicae Z69. J. Biotechnol. 286: 36-44.
  36. Ronďosova S, Legerska B, Chmelova D, Ondrejovic M, Miertus S. 2022. Optimization of growth conditions to enhance PHA production by Cupriavidus necator. Fermentation 8: 451.
  37. Kim SW, Kim P, Lee HS, Kim JH. 1996. High production of Poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 18: 25-30.
  38. Shim HJ, Ryu HW, Cho KS, Kim BS, Chang YK, Chang HN. 1999. Mass production of poly (3-hydroxybutyrate) by fed-batch cultures of Ralstonia eutropha with nitrogen and phosphate limitation. J. Microbiol. Biotechnol. 9: 751-756.
  39. Suzuki T, Yamane T, Shimizu S. 1986. Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol. 24: 370-374.
  40. Quillaguaman J, Guzman H, Van-Thuoc D, Hatti-Kaul R. 2010. Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl. Microbiol. Biotechnol. 85: 1687-1696.
  41. Kshirsagar P, Suttar R, Nilegaonkar S, Kulkarni S, Kanekar P. 2012. Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J. Biochem. Technol. 4: 512-517.
  42. Sarada R, Vidhyavathi R, Usha D, Ravishankar G. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agric. Food Chem. 54: 7585-7588.