과제정보
This work was supported by a grant from Korea University (K1717411).
참고문헌
- Barage SH, Sonawane KD. 2015. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides 52: 1-18.
- Gouras GK, Olsson TT, Hansson O. 2015. β-Amyloid peptides and amyloid plaques in Alzheimer's disease. Neurotherapeutics 12: 3-11.
- Rajasekhar K, Chakrabarti M, Govindaraju T. 2015. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem. Commun. 51: 13434‒13450.
- Minter MR, Taylor JM, Crack PJ. 2016. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. J. Neurochem. 136: 457-474.
- Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstal H. 2017. Structural studies of amyloid-β peptides: unlocking the mechanism of aggregation and the associated toxicity. Biochimie 140:176-192.
- Huang WJ, Zhang X, Chen WW. 2016. Role of oxidative stress in Alzheimer's disease. Biomed. Rep. 4: 519-522.
- Das M, Devi KP. 2021. Dihydroactinidiolide regulates Nrf2/HO-1 expression and inhibits caspase-3/Bax pathway to protect SH-SY5Y human neuroblastoma cells from oxidative stress induced neuronal apoptosis. Neurotoxicology 84: 53-63.
- Balez R, Steiner N, Engel M, Munoz SS, Lum JS, Wu Y, et al. 2016. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Sci. Rep. 6: 31450.
- Hwang S, Lim JW, Kim H. 2017. Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients 9: 883.
- Chen G-f, Xu T-h, Yan Y, Zhou Y-r, Jiang Y, Melcher K, et al. 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38:1205-1235.
- Carabotti M, Scirocco A, Maselli MA, Severi C. 2015. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28: 203-209.
- Kohler CA, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctot KL, et al. 2016. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer's disease. Curr. Pharm. Des. 22: 6152-6166.
- Xu R, Wang Q. 2016. Towards understanding brain-gut-microbiome connections in Alzheimer's disease. BMC Syst. Biol. 10: 277-285.
- Jiang C, Li G, Huang P, Liu Z, Zhao B. 2017. The gut microbiota and Alzheimer's disease. J. Alzheimers Dis. 58: 1-15.
- Zhao Y, Dua P, Lukiw W. 2015. Microbial sources of amyloid and relevance to amyloidogenesis and Alzheimer's disease (AD). J. Alzheimers Dis. Parkinsonism 5: 177.
- Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. 2016. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci. Rep. 6: 30028.
- Birks JS, Harvey RJ. 2018. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst. Rev. 6: CD001190.
- Mendiola-Precoma J, Berumen L, Padilla K, Garcia-Alcocer G. 2016. Therapies for prevention and treatment of Alzheimer's disease. Biomed Res. Int. 2016: 2589276.
- Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H. 2022. Probiotics for Alzheimer's disease: a systematic review. Nutrients 14: 20.
- Guo L, Xu J, Du Y, Wu W, Nie W, Zhang D, et al. 2021. Effects of gut microbiota and probiotics on Alzheimer's disease. Transl. Neurosci. 12: 573-580.
- Lee CC, Liao YC, Lee MC, Cheng YC, Chiou SY, Lin JS, et al. 2022. Different impacts of heat-killed and viable Lactiplantibacillus plantarum TWK10 on exercise performance, fatigue, body composition, and gut microbiota in humans. Microorganisms 10: 2181.
- Poaty Ditengou JIC, Ahn SI, Chae B, Choi NJ. 2023. Are heat-killed probiotics more effective than live ones on colon length shortness, disease activity index, and the histological score of an inflammatory bowel disease-induced murine model? A meta-analysis. J. Appl. Microbiol. 134: lxad008.
- Adams CA. 2010. The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev. 23: 37-46.
- Warda AK, Rea K, Fitzgerald P, Hueston C, Gonzalez-Tortuero E, Dinan TG, et al. 2019. Heat-killed lactobacilli alter both microbiota composition and behaviour. Behav. Brain Res. 362: 213-223.
- Noh H-J, Park JM, Kwon YJ, Kim K, Park SY, Kim I, et al. 2022. Immunostimulatory effect of heat-killed probiotics on RAW264.7 macrophages. J. Microbiol. Biotechnol. 32: 638-644.
- Park J, Lee J, Yeom Z, Heo D, Lim Y-H. 2017. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci. Rep. 7: 14520.
- Kabiraj P, Marin JE, Varela-Ramirez A, Narayan M. 2016. An 11-mer amyloid beta peptide fragment provokes chemical mutations and Parkinsonian biomarker aggregation in dopaminergic cells: a novel road map for "transfected" Parkinson's. ACS Chem. Neurosci. 7: 1519-1530.
- Abarikwu SO, Farombi EO. 2015. Atrazine induces apoptosis of SH-SY5Y human neuroblastoma cells via the regulation of Bax/Bcl-2 ratio and caspase-3-dependent pathway. Pestic. Biochem. Physiol. 118: 90-98.
- Beeri MS, Sonnen J. 2016. Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology 86: 702-703
- Lattanzio F, Carboni L, Carretta D, Candeletti S, Romualdi P. 2016. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells. Exp. Toxicol. Pathol. 68: 271-276.
- Dinkova-Kostova AT, Kostov RV, Kazantsev AG. 2018. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 285: 3576-3590.
- Han XJ, Hu YY, Yang ZJ, Jiang LP, Shi SL, Li YR, et al. 2017. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol. Med. Rep. 16: 4521-4528.
- Swerdlow RH. 2018. Mitochondria and mitochondrial cascades in Alzheimer's disease. J. Alzheimers Dis. 62: 1403-1416.
- Cosentino K, Garcia-Saez AJ. 2014. Mitochondrial alterations in apoptosis. Chem. Phys. Lipids 181: 62-75.
- Hu Q, Peng J, Liu W, He X, Cui L, Chen X, et al. 2014. Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. Int. J. Clin. Exp. Pathol. 7: 5057-5070.
- Li RM, Xiao L, Zhang T, Ren D, Zhu H. 2023. Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage. Neural Regen. Res. 18: 1347-1353.
- Choudhary GS, Al-Harbi S, Almasan A. 2015. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Apoptosis Cancer 1219: 1-9.
- Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, et al. 2010. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel. Dis. 16: 2034-2042.
- Mohandas S, Soma VL, Tran TDB, Sodergren E, Ambooken T, Goldman DL, et al. 2020. Differences in gut microbiome in hospitalized immunocompetent vs. immunocompromised children, including those with sickle cell disease. Front. Pediatr. 8: 583446.