Acknowledgement
This research study was funded by the project (RS-2021-RD009516) of the Rural Development Administration, Republic of Korea.
References
- Kim KG, Kang BS, Park BH, et al. A study on the change of production performance of 5 strains of Korean native chicken after establishment of varieties. Korean J Poult Sci 2019;46:193-204. https://doi.org/10.5536/KJPS.2019.46.3.193
- Jin S, Jayasena DD, Jo C, Lee JH. The breeding history and commercial development of the Korean native chicken. Worlds Poult Sci J 2017;73:163-74. https://doi.org/10.1017/S004393391600088X
- Food and Agriculture Organization of the United Nations. Domestic animal diversity information system (DAD-IS) [Internet]. Rome, Italy: FAO; c2024 [cited 2024 Jan 10]. Available from: https://www.fao.org/dad-is/browse-by-country-and-species/en/
- Cho S, Manjula P, Kim M, et al. Comparison of selection signatures between korean native and commercial chickens using 600K SNP array data. Genes 2021;12:824. https://doi.org/10.3390/genes12060824
- Cho E, Kim M, Kim JH, et al. Application of genomic big data to analyze the genetic diversity and population structure of Korean domestic chickens. J Anim Sci Technol 2023;65:912-21. https://doi.org/10.5187/jast.2023.e8
- Kim K, Park B, Jeon I, Choo H, Cha J. Comparison of body weight and egg production ability across nine combinations of Korean indigenous chicken breeds. Korean J Poult Sci 2021;48:161-8. https://doi.org/10.5536/KJPS.2021.48.4.161
- Sohn SH, Kim K, Shin KB, et al. Diallel cross combination test for improving the laying performance of Korean native chickens. Korean J Poult Sci 2023;50:133-41. https://doi.org/10.5536/KJPS.2023.50.3.133
- Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim Genet 2017;48:255-71. https://doi.org/10.1111/age.12526
- Purfield DC, McParland S, Wall E, Berry DP. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017;12:e0176780. https://doi.org/10.1371/journal.pone.0176780
- Gorssen W, Meyermans R, Janssens S, Buys N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet Sel Evol 2021;53:2. https://doi.org/10.1186/s12711-020-00599-7
- Meyermans R, Gorssen W, Buys N, Janssens S. How to study runs of homozygosity using PLINK? a guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 2020;21:94. https://doi.org/10.1186/s12864-020-6463-x
- Lencz T, Lambert C, DeRosse P, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA 2007;104:19942-7. https://doi.org/10.1073/pnas.0710021104
- Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet 2012;13:70. https://doi.org/10.1186/1471-2156-13-70
- Mastrangelo S, Ciani E, Sardina MT, et al. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds. Anim Genet 2018;49:71-81. https://doi.org/10.1111/age.12634
- McQuillan R, Leutenegger AL, Abdel-Rahman R, et al. Runs of homozygosity in European populations. Am J Hum Genet 2008;83:359-72. https://doi.org/10.1016/j.ajhg.2008.08.007
- Kinsella RJ, Kahari A, Haider S, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011;2011:bar030. https://doi.org/10.1093/database/bar030
- Fonseca PAS, Suarez-Vega A, Marras G, Canovas A. GALLO: an R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. GigaScience 2020;9:giaa149. https://doi.org/10.1093/gigascience/giaa149
- Hu ZL, Park CA, Wu XL, Reecy JM. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 2013;41:D871-9. https://doi.org/10.1093/nar/gks1150
- Ferencakovic M, Solkner J, Curik I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genet Sel Evol 2013;45:42. https://doi.org/10.1186/1297-9686-45-42
- Ferencakovic M, Hamzic E, Gredler B, et al. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet 2013;130:286-93. https://doi.org/10.1111/jbg.12012
- Qanbari S, Gianola D, Hayes B, et al. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics 2011;12:318. https://doi.org/10.1186/1471-2164-12-318
- Guo Y, Su A, Tian H, et al. Transcriptomic analysis of spleen revealed mechanism of dexamethasone-induced immune suppression in chicks. Genes (Basel) 2020;11:513. https://doi.org/10.3390/genes11050513
- Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003;4:712-20. https://doi.org/10.1038/nrm1202
- Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front Genet 2022;13:990849. https://doi.org/10.3389/fgene.2022.990849
- Otaify GA, Whyte MP, Gottesman GS, et al. Gnathodiaphyseal dysplasia: severe atypical presentation with novel heterozygous mutation of the anoctamin gene (ANO5). Bone 2018;107:161-71. https://doi.org/10.1016/j.bone.2017.11.012
- Zhao J, Shen X, Cao X, et al. HDAC4 regulates the proliferation, differentiation and apoptosis of chicken skeletal muscle satellite cells. Animals (Basel) 2020;10:84.
- Liu L, Liu X, Cui H, Liu R, Zhao G, Wen J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics 2019;20:863. https://doi.org/10.1186/s12864-019-6221-0
- Chen X, Zhu W, Du Y, Liu X, Geng Z. Genetic parameters for yolk cholesterol and transcriptional evidence indicate a role of lipoprotein lipase in the cholesterol metabolism of the Chinese wenchang chicken. Front Genet 2019;10:902. https://doi.org/10.3389/fgene.2019.00902
- Luo F, Jia R, Ying S, Wang Z, Wang F. Analysis of genes that influence sheep follicular development by different nutrition levels during the luteal phase using expression profiling. Anim Genet 2016;47:354-64. https://doi.org/10.1111/age.12427
- Wu X, Jiang L, Xu F, et al. Long noncoding RNAs profiling in ovary during laying and nesting in Muscovy ducks (Cairina moschata). Anim Reprod Sci 2021;230:106762. https://doi.org/10.1016/j.anireprosci.2021.106762