Acknowledgement
This work was supported by the Science and Technology Major Project of Anhui Province (202203a06020015); the key research and development project of Anhui Province (202204c06020050); the Science and Technology Major Project of Huaibei city (HK2021015); the Major Special science and technology project of Anhui province (202103b06020023); the Natural Science Research Project of Anhui Educational Committee (KJ2021A0148); and the China Agriculture Research System of MOF and MARA (CARS-41).
References
- He Y, Shi H, Li Z, et al. Identification of new genes and genetic variant loci associated with breast muscle development in the mini-cobb F2 chicken population using a genome-wide association study. Genes (Basel) 2022;13:2153. https://doi.org/10.3390/genes13112153
- Scheuermann GN, Bilgili SF, Hess JB, Mulvaney DR. Breast muscle development in commercial broiler chickens. Poult Sci 2003;82:1648-58. https://doi.org/10.1093/ps/82.10.1648
- Xue X, Fan C, Wang L, et al. Ascorbic acid regulates mouse spermatogonial stem cell proliferation in a Wnt/beta-catenin/ROS signaling dependent manner. Theriogenology 2022;184:61-72. https://doi.org/10.1016/j.theriogenology.2022.02.028
- Petracci M, Mudalal S, Soglia F, Cavani C. Meat quality in fast-growing broiler chickens. Worlds Poult Sci J 2019;71:363-74. https://doi.org/10.1017/s0043933915000367
- Li Y, Yuan P, Fan S, et al. Weighted gene co-expression network indicates that the DYNLL2 is an important regulator of chicken breast muscle development and is regulated by miR-148a-3p. BMC Genomics 2022;23:258. https://doi.org/10.1186/s12864-022-08522-8
- Zhang Z, Du H, Yang C, et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol 2019;30:233-41. https://doi.org/10.1080/10495398.2018.1476377
- Li G, Zhang T, Zhang G, et al. Analysis of gene co-expression networks and function modules at different developmental stages of chicken breast muscle. Biochem Biophys Res Commun 2019;508:177-83. https://doi.org/10.1016/j.bbrc.2018.11.044
- Bailey RA, Watson KA, Bilgili SF, Avendano S. The genetic basis of pectoralis major myopathies in modern broiler chicken lines. Poult Sci 2015;94:2870-9. https://doi.org/10.3382/ps/pev304
- Chen JL, Zhao GP, Zheng MQ, Wen J, Yang N. Estimation of genetic parameters for contents of intramuscular fat and inosine-5'-monophosphate and carcass traits in Chinese Beijing-You chickens. Poult Sci 2008;87:1098-104. https://doi.org/10.3382/ps.2007-00504
- Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, Lamont SJ. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. body composition. Poult Sci 2006;85:1712-21. https://doi.org/10.1093/ps/85.10.1712
- Allais S, Hennequet-Antier C, Berri C, Salles L, Demeure O, Le Bihan-Duval E. Mapping of QTL for chicken body weight, carcass composition, and meat quality traits in a slow-growing line. Poult Sci 2019;98:1960-7. https://doi.org/10.3382/ps/pey549
- Li YD, Bai X, Liu X, et al. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population. J Integr Agric 2022;21:2065-75. https://doi.org/10.1016/s2095-3119(21)63805-4
- Liu R, Sun Y, Zhao G, et al. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One 2013;8:e61172. https://doi.org/10.1371/journal.pone.0061172
- Tang H, Gong YZ, Wu CX, Jiang J, Wang Y, Li K. Variation of meat quality traits among five genotypes of chicken. Poult Sci 2009;88:2212-8. https://doi.org/10.3382/ps.2008-00036
- Weng K, Huo W, Li Y, et al. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers. Poult Sci 2022;101:101537. https://doi.org/10.1016/j.psj.2021.101537
- Chen Y, Qiao Y, Xiao Y, et al. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers, and spent hens. Asian-Australas J Anim Sci 2016;29:855-64. https://doi.org/10.5713/ajas.15.0840
- Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008;9:559. https://doi.org/10.1186/1471-2105-9-559
- Zhai B, Zhao Y, Li H, et al. Weighted gene co-expression network analysis identified hub genes critical to fatty acid composition in Gushi chicken breast muscle. BMC Genomics 2023;24:594. https://doi.org/10.1186/s12864-023-09685-8
- Xing S, Liu R, Zhao G, et al. Time course transcriptomic study reveals the gene regulation during liver development and the correlation with abdominal fat weight in chicken. Front Genet 2021;12:723519. https://doi.org/10.3389/fgene.2021.723519
- Guo X, Zhang H, Wang H, et al. Identification of key modules and hub genes involved in regulating the color of chicken breast meat using WGCNA. Animals (Basel) 2023;13:2356. https://doi.org/10.3390/ani13142356
- Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019;37:907-15. https://doi.org/10.1038/s41587-019-0201-4
- Li H, Handsaker B, Wysoker A, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-9. https://doi.org/10.1093/bioinformatics/btp352
- Anders S, Pyl PT, Huber W. HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166-9. https://doi.org/10.1093/bioinformatics/btu638
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504. https://doi.org/10.1101/gr.1239303
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
- Reimand J, Arak T, Adler P, et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 2016;44:W83-9. https://doi.org/10.1093/nar/gkw199
- Buckingham M. Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proc Natl Acad Sci USA 2017;114:5830-7. https://doi.org/10.1073/pnas.1610605114
- Sun Y, Ma Y, Wu X, Zhao T, Lu L, Yang Z. Functional and comparative analysis of two subtypes of cofilin family on cattle myoblasts differentiation. Agriculture 2022;12:1420. https://doi.org/10.3390/agriculture12091420
- Ran J, Li J, Yin L, et al. Comparative analysis of skeletal muscle DNA methylation and transcriptome of the chicken embryo at different developmental stages. Front Physiol 2021;12:697121. https://doi.org/10.3389/fphys.2021.697121
- Qadir AS, Lee J, Lee YS, Woo KM, Ryoo HM, Baek JH. Distal-less homeobox 3, a negative regulator of myogenesis, is downregulated by microRNA-133. J Cell Biochem 2018;120:2226-35. https://doi.org/10.1002/jcb.27533
- Rubin CJ, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010;464:587-91. https://doi.org/10.1038/nature08832
- Jing Z, Wang X, Cheng Y, et al. Detection of CNV in the SH3RF2 gene and its effects on growth and carcass traits in chickens. BMC Genet 2020;21:22. https://doi.org/10.1186/s12863-020-0831-z
- Shibata T, Ikawa M, Sakasai R, et al. Lens-specific conditional knockout of tropomyosin 1 gene in mice causes abnormal fiber differentiation and lens opacity. Mech Ageing Dev 2021;196:111492. https://doi.org/10.1016/j.mad.2021.111492
- Moraczewska J. Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J Muscle Res Cell Motil 2019;41:39-53. https://doi.org/10.1007/s10974-019-09532-y
- Wang J, Sanger JM, Kang S, et al. Ectopic expression and dynamics of TPM1α and TPM1κ in myofibrils of avian myotubes. Cell Motil Cytoskeleton 2007;64:767-76. https://doi.org/10.1002/cm.20221
- Matsunobe M, Motohashi N, Aoki E, Tominari T, Inada M, Aoki Y. Caveolin-3 regulates the activity of Ca2+/calmodulin-dependent protein kinase II in C2C12 cells. Am J Physiol Cell Physiol 2022;323:C1137-48. https://doi.org/10.1152/ajpcell.00077.2022
- Parton RG, Way M, Zorzi N, Stang E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 1997;136:137-54. https://doi.org/10.1083/jcb.136.1.137
- Hadj Sassi A, Monteil J, Sauvant P, Atgie C. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity. J Physiol Biochem 2012;68:683-90. https://doi.org/10.1007/s13105-012-0192-9
- Galbiati F, Volonte D, Engelman JA, Scherer PE, Lisanti MP. Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts.: transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 1999;274:30315-21. https://doi.org/10.1074/jbc.274.42.30315
- Nguyen MT, Min KH, Kim D, Park SY, Lee W. CFL2 is an essential mediator for myogenic differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 2020;533:710-6. https://doi.org/10.1016/j.bbrc.2020.11.016
- Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH. Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum Mol Genet 2012;21:2341-56. https://doi.org/10.1093/hmg/dds053
- Maak S, Neumann K, Swalve HH. Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Gene 2006;379:141-7. https://doi.org/10.1016/j.gene.2006.05.007
- Buckingham M. Muscle differentiation: which myogenic factors make muscle? Curr Biol 1994;4:61-3. https://doi.org/10.1016/S0960-9822(00)00014-2
- Lazure F, Blackburn DM, Corchado AH, et al. Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep 2020;21:e49499. https://doi.org/10.15252/embr.201949499