Acknowledgement
이 논문은 국립부경대학교 자율창의학술연구비(2022년)에 의하여 연구되었음.
References
- Benson, D. O., and P. A. Dirmeyer, 2023: The soil Moisture-Surface flux relationship as a factor for extreme heat predictability in subseasonal to seasonal forecasts. J. Climate, 36, 6375-6392, doi:10.1175/JCLID-22-0447.1.
- Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251-7268, doi:10.1029/95JD02165.
- Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. J. Hydrometeor, 4, 599-610, doi:10.1175/1525-7541(2003)004<0599:TROTLS>2.0.CO;2.
- Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling: SOIL MOISTURE-CLIMATE COUPLING. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.
- Dirmeyer, P. A., and Coauthors, 2018: Verification of Land-Atmosphere coupling in forecast models, reanalyses, and land surface models using flux site observations. J. Hydrometeor., 19, 375-392, doi:10.1175/JHM-D-17-0152.1.
- Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006: GSWP-2: Multimodel analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc., 87, 1381-1397, doi:10.1175/BAMS-87-10-1381.
- Dirmeyer, P. A., G. Balsamo, E. M. Blyth, R. Morrison, and H. M. Cooper, 2021: Land-Atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018. AGU Advances, 2, e2020AV000283, doi:10.1029/2020AV000283.
- Dorigo, W., and Coauthors, 2021: The international soil moisture network: serving earth system science for over a decade. Hydrol. Earth Syst. Sci., 25, 5749-5804, doi:10.5194/hess-25-5749-2021.
- Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.
- Gelaro, R., and Coauthors, 2017: The Modern-Era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30, 5419-5454, doi:10.1175/JCLI-D-16-0758.1.
- Guo, Z., and P. A. Dirmeyer, 2006: Evaluation of GSWP-2 soil moisture simulations, Part I: Inter-model comparison. J. Geophys. Res., 111, D22S02, doi:10.1029/2006JD007233.
- Guo, Z., P. A. Dirmeyer, Z.-Z. Hu, X. Gao, and M. Zhao, 2006: Evaluation of GSWP-2 soil moisture simulations. Part 2: Sensitivity to external meteorological forcing. J. Geophys. Res., 111, D22S03, doi:10.1029/2006JD007845.
- Hsu, H., P. A. Dirmeyer, and E. Seo, 2024: Exploring the mechanisms of the soil moisture-air temperature hypersensitive coupling regime. Water Resour. Res., 60, e2023WR036490, doi:10.1029/2023WR036490.
- Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24809-24822, doi:10.1029/2000JD900327.
- Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14415-14428, doi:10.1029/94JD00483.
- Munoz-Sabater, J., and Coauthors, 2021: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13, 4349-4383, doi:10.5194/essd-13-4349-2021.
- Richter, J. H., and Coauthors, 2024: Quantifying sources of subseasonal prediction skill in CESM2. npj Clim. Atmos. Sci., 7, 59, doi:10.1038/s41612-024-00595-4.
- Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381-394, doi:10.1175/BAMS-85-3-381.
- Santanello, J. A., and Coauthors, 2018: Land-atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 1253-1272, doi:10.1175/BAMS-D17-0001.1.
- Seo, E., and P. A. Dirmeyer, 2022a: Improving the ESA CCI daily soil moisture time series with physically-based land surface model datasets using a Fourier time-filtering method. J. Hydrometeor., 23, 473-489, doi:10.1175/JHM-D-21-0120.1.
- Seo, E., and P. A. Dirmeyer, 2022b: Understanding the diurnal cycle of land-atmosphere interactions from flux site observations. Hydrol. Earth Syst. Sci., 26, 5411-5429, doi:10.5194/hess-26-5411-2022.
- Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Clim. Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4.
- Seo, E., M.-I. Lee, S. D. Schubert, R. D. Koster, and H.-S. Kang, 2020: Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Lett., 15, 114018, doi:10.1088/1748-9326/abbbae.
- Seo, E., P. A. Dirmeyer, M. Barlage, H. Wei, and M. Ek, 2024: Evaluation of land-atmosphere coupling processes and climatological bias in the UFS global coupled model. J. Hydrometeor., 25, 161-175, doi:10.1175/JHM-D-23-0097.1.
- Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-Year High-Resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088-3111, doi:10.1175/JCLI3790.1.
- Tak, S., E. Seo, P. A. Dirmeyer, and M.-I. Lee, 2024: The role of soil moisture-temperature coupling for the 2018 Northern European heatwave in a subseasonal forecast. Wea. Climate Extremes, 44, 100670, doi:10.1016/j.wace.2024.100670.