DOI QR코드

DOI QR Code

Methodology for Producing Representative Meteorological Fields for Urban Dispersion Modeling

도심 확산 모의를 위한 대표 기상장 산출 방안

  • Damwon So (Department of Atmospheric Science, Kongju National University) ;
  • Joowan Kim (Department of Atmospheric Science, Kongju National University) ;
  • Ju-Wan Woo (Department of Atmospheric Science, Kongju National University) ;
  • Sang-Hyun Lee (Department of Atmospheric Science, Kongju National University)
  • 서담원 (공주대학교 대기과학과) ;
  • 김주완 (공주대학교 대기과학과) ;
  • 우주완 (공주대학교 대기과학과) ;
  • 이상현 (공주대학교 대기과학과)
  • Received : 2024.06.25
  • Accepted : 2024.09.03
  • Published : 2024.11.30

Abstract

To simulate dispersion of atmospheric pollutants in urban areas, representative meteorological fields were calculated by classifying various meteorological data based on surface wind direction/speed and atmospheric stability obtained from the 5-year (2015~2019) record of ERA5 reanalysis data. Wind direction and speed were divided into 16 and 4 categories, respectively. Pasquill-Gifford (P-G) method is used to classify atmospheric stability into 3 categories for surface meteorological fields and Bulk Richardson number is used to classify atmospheric stability into 3 categories for vertical profiles. The atmospheric profiles of temperature, humidity, wind speed, and potential temperature for a given point (Seoul in this study) were grouped into the 192 (16 × 4 × 3) categories for each season. The classified atmospheric profiles represent the similarity of the group relatively well. These profiles can serve as input data for atmospheric dispersion modeling under various wind and stability conditions, providing more accurate and improved results. This approach ensures that vertical profiles accurately reflect the properties of surface data, enhancing correlation and reliability in simulation outcomes.

Keywords

Acknowledgement

본 연구는 원자력안전위원회의 재원으로 한국원자력안전재단의 지원을 받아 수행한 원자력안전연구사업의 연구결과입니다(No. 2105036).

References

  1. Arnold, D., C. Maurer, G. Wotawa, R. Draxler, K. Saito, and P. Seibert, 2015: Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident. J. Environ. Radioactivity, 139, 212-225, doi:10.1016/j.jenvrad.2014.02.013.
  2. Bocquet, M., 2012: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 664-681, doi:10.1002/qj.961.
  3. Bowyer, T. W., R. Kephart, P. W. Eslinger, J. I. Friese, H. S. Miley, and P. R. J. Saey, 2013: Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions. J. Environ. Radioactivity, 115, 192-200, doi:10.1016/j.jenvrad.2012.07.018.
  4. Chen, B., A. F. Stein, N. Castell, J. D. de la Rosa, A. M. Sanchez de la Campa, Y. Gonzalez-Castanedo, and R. R. Draxler, 2012: Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmos. Environ., 49, 114-122, doi:10.1016/j.atmosenv.2011.12.014.
  5. Cohen, M., and Coauthors, 2004: Modeling the atmospheric transport and deposition of mercury to the Great Lakes. Environ. Res., 95, 247-265, doi:10.1016/j.envres.2003.11.007.
  6. Connan, O., K. Smith, C. Organo, L. Solier, D. Maro, and D. Hebert, 2013: Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with 85Kr measurements made in the vicinity of nuclear reprocessing plant. J. Environ. Radioactivity, 124, 266-277, doi:10.1016/j.jenvrad.2013.06.004.
  7. Geng, X., Z. Xie, L. Zhang, M. Xu, and B. Jia, 2018: An inverse method to estimate emission rates based on nonlinear least-squares-based ensemble four-dimensional variational data assimilation with local air concentration measurements. J. Environ. Radioactivity, 183, 17-26, doi:10.1016/j.jenvrad.2017.12.004.
  8. Gifford, F. A., Jr., 1961: Use of routine observations for estimating atmospheric dispersion. Nucl. Saf., 2, 47-57.
  9. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  10. Hwang, W. T., E. H. Kim, H. S. Jeong, H. J. Jeong, and M. H. Han, 2013: Influence of modelling approaches of diffusion coefficients on atmospheric dispersion factors. J. Radiat. Prot., 38, 60-67, doi:10.14407/jrp.2013.38.2.060.
  11. Jeong, H., M. Park, H. Jeong, W. Hwang, E. Kim, and M. Han, 2013: Radiological risk assessment caused by RDD terrorism in an urban area. Appl. Radiation and Isotopes, 79, 1-4, doi:10.1016/j.apradiso.2013.04.018.
  12. Jeong, S. J., 2021: A CFD study on odor dispersion around building array under different atmospheric stability conditions. J. Korean Soc. Atmos. Environ., 37, 1-16. doi:10.5572/KOSAE.2021.37.1.001.
  13. KEITI, 2014: The Current Status and Trends in the Application of Atmospheric Dispersion Models. Korea Environmental Industry and Technology Institute.
  14. Kim, C.-H., I.-S. Park, S.-J. Lee, J.-S. Kim, Y.-D. Hong, J.-S. Han, and H.-A. Jin, 2005: Evaluation of the effect of traffic control program on the ambient air quality in Seoul metropolitan area using the lower level stability index of atmosphere. J. Korean Soc. Atmos. Environ., 21, 243-257.
  15. Lee, J. H., D. H. Jo, and J. H. Cha, 2022: A study on the use of CFD for risk prediction of chemical terrorism in urban areas. J. Police Studies, 22, 59-77.
  16. Lee, S. H., and K. H. Kwak, 2020: Assessing 3-D spatial extent of near-road air pollution around a signalized intersection using drone monitoring and WRF-CFD modeling. Int. J. Environ. Res. Public Health, 17, 6915, doi:10.3390/ijerph17186915.
  17. Leelossy, A., F. Molnar, F. Izsak, A. Havasi, I. Lagzi, and R. Meszaros, 2014: Dispersion modeling of air pollutants in the atmosphere: a review. Cent. Eur. J. Geosci., 6, 257-278, doi:10.2478/s13533-012-0188-6.
  18. MAMO, 2011: Metropolitan Air Quality Information. Metropolitan Air Quality Management Office.
  19. Maronga, B., and Coauthors, 2020: Overview of the PALM model system 6.0. Geosci. Model Dev., 13, 1335-1372, doi:10.5194/gmd-13-1335-2020.
  20. Mun, J., W. Jeon, and H. W. Lee, 2020: Impact of different meteorological initializations on WRF simulation during the KORUS-AQ campaign. J. Environ. Sci. Inter., 29, 33-44, doi:10.5322/JESI.2020.29.1.33.
  21. Nakajima, K., T. Yamanaka, R. Ooka, H. Kikumoto, and H. Sugawara, 2020: Observational assessment of applicability of Pasquill stability class in urban areas for detection of neutrally stratified wind profiles. J. Wind Engineering and Industrial Aerodynamics, 206, 104337, doi:10.1016/j.jweia.2020.104337.
  22. Oh, H.-S., S.-H. Lee, D.-W. Choi, and K.-H. Kwak, 2020: Comparison of the vertical PM2.5 distributions according to atmospheric stability using a drone during open burning events. J. Korean Soc. Atmos. Environ., 36, 108-118, doi:10.5572/KOSAE.2020.36.1.108.
  23. Park, J., S.-Y. Lee, L.-Y. Choi, K. F. Daniel, and S.-W. Hong, 2023: Establishing and operating a test bench for assessment of pesticide drift by aerial application. J. Bio-Environ. Control, 32, 423-433, doi:10.12791/KSBEC.2023.32.4.423.
  24. Park, M.-H., H.-D. Kim, and M.-Y. Kim, 2005: Sensitivity of air pollutants dispersion according to the selection of meteorological data -Case of Seongseo industrial complex of Daegu-. J. Environ. Sci., 14, 141-156, doi:10.5322/jes.2005.14.2.141.
  25. Pasquill, F., 1961: The estimation of the dispersion of windborne material. Meteor. Mag., 90, 33-49.
  26. Povinec, P. P., and Coauthors, 2013: Dispersion of Fukushima radionuclides in the global atmosphere and the ocean. Appl. Radiation and Isotopes, 81, 383-392, doi:10.1016/j.apradiso.2013.03.058.
  27. RDA, 2010: Development of a CFD model to predict odor dispersion from livestock. Rural Development Administration.
  28. Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd Edition, John Wiley & Sons, New York.
  29. Srinivas, C. V., R. Venkatesan, R. Baskaran, V. Rajagopal, and B. Venkatraman, 2012: Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor. Atmos. Environ., 61, 66-84, doi:10.1016/j.atmosenv.2012.06.082.
  30. Stein, A. F., G. D. Rolph, R. R. Draxler, B. Stunder, and M. Ruminski, 2009: Verification of the NOAA smoke forecasting system: model sensitivity to the injection height. Wea. Forecasting, 24, 379-394, doi:10.1175/2008WAF2222166.1.
  31. Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059-2077, doi:10.1175/BAMS-D-14-00110.1.
  32. Woo, J.-W., S.-B. Oh, S.-H. Park, and S.-H. Lee, 2022: Development of a detailed urban meteorological dispersion evaluation system. Proceedings of the 2022 Autumn Meeting of the Korean Association for Radiation Protection, 613-614.
  33. Yang, H., G. Lee, M. Bae, and C. Yi, 2021: Estimation of the temperature reduction effect of heatwave response projects in urban spaces. J. Clim. Change Res., 12. 777-795, doi:10.15531/KSCCR.2021.12.6.777.
  34. Yerramilli, A., and Coauthors, 2012: An integrated WRF/HYSPLIT modeling approach for the assessment of PM 2.5 source regions over the Mississippi Gulf Coast region. Air Qual, Atmos. Health, 5, 401-412, doi:10.1007/s11869-010-0132-1.