Journal of Korean Society for Atmospheric Environment
/
v.20
no.1
/
pp.47-58
/
2004
The $textsc{k}$-$\varepsilon$ algebraic stress model (KEASM) was applied to atmospheric dispersion simulation using the Lagrangian particle dispersion model and was compared with the most popular turbulence closure model in the field of atmospheric simulation, the Mellor-Yamada (MY) model. KEASM has been rarely applied to atmospheric simulation, but it includes the pressure redistribution effect of buoyancy due to heat and momentum fluxes. On the other hand, such effect is excluded from MY model. In the simulation study, the difference in the two turbulence models was reflected to both the turbulent velocity and the Lagrangian time scale. There was little difference in the vertical diffusion coefficient $\sigma$$_{z}$. However, the horizontal diffusion coefficient or calculated by KEASM was larger than that by MY model, coincided with the Pasquill-Gifford (PG) chart. The applicability of KEASM to atmospheric simulations was demonstrated by the simulations.s.
To simulate dispersion of atmospheric pollutants in urban areas, representative meteorological fields were calculated by classifying various meteorological data based on surface wind direction/speed and atmospheric stability obtained from the 5-year (2015~2019) record of ERA5 reanalysis data. Wind direction and speed were divided into 16 and 4 categories, respectively. Pasquill-Gifford (P-G) method is used to classify atmospheric stability into 3 categories for surface meteorological fields and Bulk Richardson number is used to classify atmospheric stability into 3 categories for vertical profiles. The atmospheric profiles of temperature, humidity, wind speed, and potential temperature for a given point (Seoul in this study) were grouped into the 192 (16 × 4 × 3) categories for each season. The classified atmospheric profiles represent the similarity of the group relatively well. These profiles can serve as input data for atmospheric dispersion modeling under various wind and stability conditions, providing more accurate and improved results. This approach ensures that vertical profiles accurately reflect the properties of surface data, enhancing correlation and reliability in simulation outcomes.
Journal of Korean Society for Atmospheric Environment
/
v.14
no.6
/
pp.643-650
/
1998
Many atmospheric dispersion models have been based on the Gaussian distribution concept of plume spread. In application of Gaussian plume dispersion models, vertical dispersion coefficient 3 has been known as a sensitive variable. Vertical diffusivity K2 (=Oz2/2t) tends to increase with surface roughness, and the value of K3 in urban area is larger than that in rural area due to heat emission as well as increased roughness. Though Pasquill proposed a modification scheme for qz vs x system of Pasquill-Gifford under consideration of roughness effect in 1976, there appears not to be realistic reexamination on the modification scheme. In this study literature review on the effect of terrain or roughness on venical plume dispersion has been carried out in order to improve the prediction results of atmospheric pollution concentration. Again a few research objectives on vertical atmospheric dispersion in complex terrain were Proposed.
We developed a grid-based Gaussian plume model to evaluate tracer release data measured at Young Gwang nuclear site in 1996. Downwind distance was divided into every 10m from 0.1km to 20km, and crosswind distance was divided into every 10m centering released point from -5km to 5km. We determined dispersion factors, ${\sigma}_y\;and\;{\sigma}_z$ using Pasquill-Gifford method computed by atmospheric stability. Forecasting ability of the grid-based Gaussian plume model was better at the 3km away from the source than 8km. We confirmed that dispersion band must be modified if receptor is far away from the source, otherwise P-G method is not appropriate to compute diffusion distance and diffusion strength in case of growing distance. So, we developed an empirical equation using linear programming. An objective function was designed to minimize sum of the absolute value between observed and computed values. As a result of application of the modified dispersion equation, prediction ability was improved rather than P-G method.
Proceedings of the Korea Air Pollution Research Association Conference
/
1999.10a
/
pp.183-185
/
1999
가우시안 모델의 부정확성의 중요한 요인중의 하나는 수평확산폭($\sigma$$_{y}$)과 연직확산폭($\sigma$$_{z}$)이다. (이와김,1992) 가우시안 모델에서 사용되는 확산폭 산출방법인 Pasquill-Gifford Scheme은 미국 Nebraska 주 O'neill 부근 풀로 덮힌 평탄한 지형에서 확산 실험을 수행한 Prairie grass project의 결과로 연기의 확산폭은 각 안정도 계급(A-F)별로 거리의 함수로 나타낸 식을 이용하고 있다.(중략)략)
Gaussian dispersion model is the most widely used tool for the ground level air pollution simulation. Though in spite of the convenience there are important problems on the Pasquill- Gifford' stability classification scheme which was used to define the turbulent state of the atmosphere or to describe the dispersion capabilities of the atmosphere which was each covers a broad range of stability conditions, and that they were very site specific, and the vertical dispersion calculation formula on the case of the unstable atmospheric condition. This paper was carried out to revise the Gaussian dispension model for the purposed of increase the modeling performance and propose the revised model, which was composed of the turbulent characteristics in the unstable atmospheric conditions. The proposed models in this study were composed of the profile method, Monin-Obukhove length, the probability density function model and the lateral dispersion function which was composed of the turbulent parameters, $u_*$(friction velocity), $w_*$(convective velocity scale), $T_L$(lagrangian time scale) for the model specific. There were very good performance results compare with the tracer experiment result on the case of the short distance (<1415m) from the source, but increase the simulation error(%) to stand off the source in the all models. In conclusion, the revised Gaussian dispersion model using the turbulent characteristics may be a good contribution for the development of the air pollution simulation model.
The Pasquill-Gifford stability category is a very important scheme of the Gaussian type dispersion model defined the complex turbulence state of the atmosphere by A grade(very unstable) to F grade(very stable). But there has been made a point out that this stability category might decrease the predictability of the model because it was each covers a broad range of stability conditions, and that they were very site specific. The APSM (Air Pollution Simulation Model) was composed of the turbulent parameters, i.e. friction velocity(${\mu}$$\_$*/), convective velocity scale($\omega$$\_$*/) and Monin-Obukhov length scale(L) for the purpose of the performance increasing on the case of the unstable atmospheric conditions. And the PDF (Probability Density Function)model was used to express the vertical dispersion characteristics and the profile method was used to calculate the turbulent characteristics. And the performance assessment was validated between APSM and EPA regulatory models(TEM, ISCST), tracer experiment results. There were very good performance results simulated by APSM than that of TEM, ISCST in the short distance (<1415 m) from the source, but increase the simulation error(%) to stand off the source in others. And there were differences in comparison with the lateral dispersion coefficient($\sigma$$\_$y/) which was represent the horizontal dispersion characteristics of a air pollutant in the atmosphere. So the different calculation method of $\sigma$$\_$y/ which was extrapolated from a different tracer experiment data might decrease the simulation performance capability. In conclusion, the air pollution simulation model showed a good capability of predict the air pollution which was composed of the turbulent parameters compared with the results of TEM and ISCST for the unstable atmospheric conditions.
Hwang, Won Tae;Kim, Eun Han;Jeong, Hae Sun;Jeong, Hyo Joon;Han, Moon Hee
Journal of Radiation Protection and Research
/
v.38
no.2
/
pp.60-67
/
2013
A diffusion coefficient is an important parameter in the prediction of atmospheric dispersion using a Gaussian plume model, and its modelling approach varies. In this study, dispersion coefficients recommended by the U. S. Nuclear Regulatory Commission's (U. S. NRC's) regulatory guide and the Canadian Nuclear Safety Commission's (CNSC's) regulatory guide, and used in probabilistic accident consequence analysis codes MACCS and MACCS2 have been investigated. Based on the atmospheric dispersion model for a hypothetical accidental release recommended by the U. S. NRC, its influence to atmospheric dispersion factor was discussed. It was found that diffusion coefficients are basically predicted from a Pasquill- Gifford curve, but various curve fitting equations are recommended or used. A lateral dispersion coefficient is corrected with consideration for the additional spread due to plume meandering in all models, however its modelling approach showed a distinctive difference. Moreover, a vertical dispersion coefficient is corrected with consideration for the additional plume spread due to surface roughness in all models, except for the U. S. NRC's recommendation. For a specified surface roughness, the atmospheric dispersion factors showed differences up to approximately 4 times depending on the modelling approach of a dispersion coefficient. For the same model, the atmospheric dispersion factors showed differences by 2 to 3 times depending on surface roughness.
Kim, Tae Woo;Jeon, Yeo Ryeong;Chang, Sunyoung;Kim, Yongmin
Journal of the Korean Society of Radiology
/
v.12
no.6
/
pp.719-725
/
2018
After 9/11 attacks in the U.S, Terrorism has increased the number of unspecified casualties through multi-use facility terror attacks compared to the past. The subsequent London bombings and the self-destruction of Pakistan increased people's fear and social anxiety. As international events have been held in Korea recently, awareness and concern over radioactive terrorism and security management of radioactive materials are increasing. In this paper, we compared the results of different meteorological conditions using HotSpot Code. After creating a possible terror scenario in Korea, sources likely to be use in RDD and Dirty bomb were investigated. The meteorological condition was selected by comparing the Pasquill-Gifford stability class with the most stable condition F and the most unstable condition A. The result value of the A and F condition through simulation were shown not to cause citizens to die from acute effects due to radiological effects. The range of radioactivity is different according to the wind speed and the meteorological stability, and the degree of radioactivity dilution is different according to meteorological conditions. Analysis results are expected to be used for initial response in the event of a radioactive terrorist attack.
TCM has been used for many environmental impact assessments in Korea. But there was reported that an error was found in area source calculation of original TCM and modified. In this study, TUM(TCM-urban mode) and TRM(TCM-rural mode) were developed for urban and rural area by modification of original TCM. McElroy-Pooler dispersion parameter was used for area and point source in TUM, Pasquill-Gifford parameter was used for area and point source in TRM. And Irwin's vertical wind speed profile exponents were used for TUM and TRM. Then predicted value by TUM, TRM and a value from the same area and point data by CDM2, ISCLT3 were compared. And it was found that predicted value from point source by TUM, TRM was very similar to a value by CDM2, ISCLT3, and predicted value from area source by TRM was similar to a value by CDM2, ISCLT3. But predicted value from area: source by TUM was an half lower than a value by CDM2, ISCLT3.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.