• Title/Summary/Keyword: Land-atmosphere coupling

Search Result 4, Processing Time 0.016 seconds

Evaluation of Soil Moisture Reanalysis Datasets over East Asia Using In-situ Measurements (직접관측자료를 이용한 동아시아 토양수분 재분석자료 성능 진단)

  • Bora Lee;Eunkyo Seo
    • Atmosphere
    • /
    • v.34 no.4
    • /
    • pp.359-369
    • /
    • 2024
  • This study evaluates the performance of various soil moisture reanalysis datasets over the East Asian region to identify the most suitable product for climate and hydrological studies. The analysis includes land reanalysis products generated by the Noah, VIC, and Catchment land surface models (LSMs), driven by GLDAS2.0 near-surface atmospheric forcing, alongside MERRA2 and ERA5-land datasets. The 62 in-situ soil moisture measurements observed from 1980 to 2014 are used to validate the modeled data across the entire study period, while 58 of these measurements are used for the May to September (MJJAS) period. Results indicate that, when driven by the same atmospheric forcing, the Noah and Catchment models outperform VIC, and MERRA2 shows lower errors compared to ERA5-land. Seasonal soil moisture variability, primarily driven by the East Asian monsoon, peaks in September, with MERRA2 providing the most realistic simulation of seasonal phase and amplitude. Daily soil moisture variations are better captured by MERRA2 and ERA5-land than by GLDAS2.0-based products. Overall, MERRA2 emerges as the most reliable reanalysis dataset for evaluating both the climatological mean and variability of soil moisture in East Asia. Additionally, multi-model mean analysis reveals a long-term trend of drying soil moisture and enhanced land-atmosphere coupling in northern East Asia.

Understanding Physical Mechanism of 2022 European Heat Wave (2022년 발생한 기록적인 유럽 폭염 발생의 역학적 원인 규명 연구)

  • Ju Heon Kim;Gun-Hwan Yang;Hyun-Joon Sung;Jung Hyun Park;Eunkyo Seo
    • Atmosphere
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2023
  • This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.

The Characteristics of Signal versus Noise SST Variability in the North Pacific and the Tropical Pacific Ocean

  • Yeh, Sang-Wook;Kirtman, Ben P.
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.