DOI QR코드

DOI QR Code

Using evidence of student thinking as resources in a digital collaborative platform

  • Sunyoung Park (Program in Mathematics Education, Michigan State University) ;
  • Taren Going (Program in Mathematics Education, Michigan State University) ;
  • Alden J. Edson (Program in Mathematics Education, Michigan State University)
  • Received : 2024.03.12
  • Accepted : 2024.08.22
  • Published : 2024.09.30

Abstract

Learning mathematics in a student-centered, problem-based classroom requires students to develop mathematical understanding and reasoning collaboratively with others. Despite its critical role in students' collaborative learning in groups and classrooms, evidence of student thinking has rarely been perceived and utilized as a resource for planning and teaching. This is in part because teachers have limited access to student work in paper-and-pencil classrooms. As an alternative approach to making student thinking visible and accessible, a digital collaborative platform embedded with a problem-based middle school mathematics curriculum is developed through an ongoing design-based research project (Edson & Phillips, 2021). Drawing from a subset of data collected for the larger research project, we investigated how students generated mathematical inscriptions during small group work, and how teachers used evidence of students' solution strategies inscribed on student digital workspaces. Findings show that digital flexibility and mobility allowed students to easily explore different strategies and focus on developing mathematical big ideas, and teachers to foreground student thinking when facilitating whole-class discussions and planning for the next lesson. This study provides insights into understanding mathematics teachers' interactions with digital curriculum resources in the pursuit of students' meaningful engagement in making sense of mathematical ideas.

Keywords

Acknowledgement

This work was supported by the National Science Foundation grants, DRL-1620934, DRL-2007842, and DRL-2200763.

References

  1. Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3(3), 205-224. https://doi.org/10.1023/A:1009903206236
  2. Ball, D. L. (2001). Teaching with respect to mathematics and students. In T. Wood & B. Scott Nelson (Eds.), Beyond classical pedagogy: Teaching elementary school mathematics (pp. 11-22). Erlbaum.
  3. Barab, S. A., Sadler, T. D., Heiselt, C., Hickey, D., & Zuiker, S. (2010). Relating narrative, inquiry, and inscriptions: Supporting consequential play. Journal of Science Education and Technology, 19(4), 387-407. https://doi.org/10.1007/s10956-010-9220-0
  4. Bautista, A., Brizuela, B. M., Glennie, C. R., & Caddle, M. C. (2014). Mathematics teachers attending and responding to students' thinking: Diverse paths across diverse assignments. International Journal for Mathematics Teaching & Learning, July Issue, 1-28. Retrieved from http://www.cimt.plymouth.ac.uk/journal/bautista.pdf
  5. Bieda, K., Edson, A. J., & Phillips, D. E. (2020). The impact of COVID-19 on school mathematics curriculum. Create for STEM blog. http://create4stem.education/news/articles_opinion/impact_covid_19_school_mathematics_curriculum.
  6. Bowers, D. M., Edson, A. J., & Sharma, A. (2019). Capturing inscriptional practices in digitally collaborative classroom settings: A focus on constructing. In S. Otten, A. G. Candela, Z. de Araujo, C. Haines, & C. Munter (Eds.), Proceedings in the 41st annual meeting of the North American Chapter of the International Group for Psychology in Mathematics (pp. 1894). University of Missouri.
  7. Brown, M. W. (2009). The teacher-tool relationship: Theorizing the design and use of curriculum materials. In J. Remillard, B. A. Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematics teachers at work: Connecting curriculum materials and classroom instruction (pp. 17-36). Routledge.
  8. Brown, A. L., & Campione, J. C. (1996). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229-270). The MIT Press.
  9. Chazen, D., & Ball, D. L. (2001). Beyond being told not to tell. For the Learning of Mathematics, 19(2), 2-10.
  10. Choppin, J. (2011). Learned adaptations: Teachers' understanding and use of curriculum resources. Journal of Mathematics Teacher Education, 14(5), 331-353. https://doi.org/10.1007/s10857-011-9170-3
  11. Choppin, J., Carson, C., Borys, Z., Cerosaletti, C., & Gillis, R. (2014). A typology for analyzing digital curricula in mathematics education. International Journal of Education in Mathematics, Science and Technology, 2(1), 11-25.
  12. Choppin, J., McDuffie, A., Drake, C., & Davis, J. (2015). Curriculum metaphors in U.S. middle school mathematics. In T. G. Bartell, K. Bieda, R. Putnam, K. Bradfield, & H. Dominguez (Eds.), Proceedings of the 37th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 65-72). Michigan State University.
  13. Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3-4), 175-190.
  14. Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25(2), 119-142.
  15. Connected Mathematics Project. (2023). The connected mathematics project 4 field-test materials. Michigan State University.
  16. Cusi, A., Morselli, F., & Sabena, C. (2016). Enhancing formative assessment strategies in mathematics through classroom connected technology. In C. Csikos, A. Rausch, & J. Szitanyi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 195-202). Szeged, Hungary: PME.
  17. Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning, 3(1), 5-23. https://doi.org/10.1007/s11412-007-9033-1
  18. Dunning, A. (2023). A framework for selecting strategies for whole-class discussions. Journal of Mathematics Teacher Education, 26(4), 433-454. https://doi.org/10.1007/s10857-022-09536-5
  19. Edson, A. J. (2014). A study on the iterative development and efficacy of a deeply digital instructional unit on binomial distribution and statistical inference. Western Michigan University.
  20. Edson, A. J. (2016). A design experiment of a deeply digital instructional unit and its impact in high school classrooms. In M. Bates & Z. Usiskin (Eds.), Digital curricula in school mathematics (pp. 177-193). Information Age Publishing.
  21. Edson, A. J. (2017). Learner-controlled scaffolding linked to open-ended problems in a digital learning environment. ZDM Mathematics Education, 49(5), 735-753. https://doi.org/10.1007/s11858-017-0873-5
  22. Edson, A., Fabry, A., Going, T., Park, S., & Bieda, K. (2023, April 13-16). Teacher Network Use of Digital Curriculum Resources for Teaching Mathematics [Conference presentation]. Annual Meeting of the American Educational Research Association, Chicago, IL. United States.
  23. Edson, A. J., Park, S., Quail, M., Tyburski, B., & Claffey, E (2023, April 13-16). A Framework for Capturing Mathematics Students' Inscriptional Practices in Digital Collaborative Environments [Conference presentation]. Annual Meeting of the American Educational Research Association, Chicago, IL. United States.
  24. Edson, A. J., & Phillips, E. D. (2021). Connecting a teacher dashboard to a student digital collaborative environment: Supporting teacher enactment of problem-based mathematics curriculum. ZDM Mathematics Education, 53(7), 1285-1298. https://doi.org/10.1007/s11858-021-01310-w.
  25. Edson, A. J., & Phillips, E. D. (2022). The potential of digital collaborative environments for problem-based mathematics curriculum. In J. Morska & A. Rogerson (Eds.), Proceedings of the 16th annual meeting of the International Conference on the Mathematics Education for the Future Project: Building on the Past to Prepare for the Future (pp. 157-162). Cambridge, UK. https://doi.org/10.37626/GA9783959872188.0.029
  26. Edson, A. J., Phillips, E. D., & Bieda, K. (2018). Transitioning a problem-based curriculum from print to digital: New considerations for task design. In H-G. Weigand, A. Clark-Wilson, A. Donevska-Todorova, E. Faggiano, N. Gronbaek & A. Trgalova (Eds.), Proceedings of the Fifth European Society for Research in Mathematics Education Topic Conference: Mathematics Education in the Digital Age (p. 59-67). University of Copenhagen.
  27. Edson, A. J., Phillips, E. D., & Bieda, K. (2019). Transitioning from print to digital curriculum materials: Promoting mathematical engagement and learning. In S. Rezat, L. Fan, M. Hattermann, J. Schumacher, & H. Wuschke (Eds.) Proceedings of the Third International Conference on Mathematics Textbook Research and Development (pp. 167-172). Paderborn University.
  28. Edson, A. J., Phillips, E., Slanger-Grant, Y., & Stewart, J. (2019). The arc of learning framework: An ergonomic resource for design and enactment of problem-based curriculum. International Journal of Educational Research, 93, 118-135. https://doi.org/10.1016/j.ijer.2018.09.020
  29. Enyedy, N. (2005). Inventing mapping: Creating cultural forms to solve collective problems. Cognition and Instruction, 23(4), 427-466. https://doi.org/10.1207/s1532690xci2304_1
  30. Evans, S., & Dawson, C. (2017). Orchestrating productive whole class discussions: The role of designed student responses. Mathematics Teacher Education and Development, 19(2), 159-179.
  31. Fahlgren, M., & Brunstrom, M. (2020). Orchestrating whole-class discussions in mathematics using connected classroom technology. In B. Barzel, R. Bebernik, L. Gobel, M. Pohl, H. Ruchniewicz, F. Schacht, & D. Thurm (Eds.), Proceedings of 14th International Conference on Technology in Mathematics Teaching- ICTMT 14 (pp.173-182). https://doi.org/10.17185/duepublico/70761
  32. Fennema, E., Carpenter, T. P., Franke, M. L., & Levi, L. (1996). A longitudinal study of learning to use children's thinking in mathematics instruction. Journal for Research in Mathematics Education, 27(4), 403-434. https://doi.org/10.2307/749875
  33. Greeno, J. G. (1989). A perspective on thinking. American Psychologist, 44(2), 134-141.
  34. Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research in Mathematics Education, 22(3), 170-218. https://doi.org/10.5951/jresematheduc.22.3.0170
  35. Harris, K., Marcus, R., McLaren, K. & Fey, J. (2001). Curriculum materials supporting problem-based teaching. School Science and Mathematics, 101(6), 310-318. https://doi.org/10.1111/j.1949-8594.2001.tb17962.x
  36. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406. https://doi.org/10.3102/00028312042002371
  37. Horn, I. S. (2012). Strength in numbers. National Council of Teachers of Mathematics. 
  38. Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children's mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. http://doi.org/10.2307/20720130.
  39. Jacobs, V. R., & Spangler, D. A. (2017). Research on core practices in K-12 mathematics teaching. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 766-792). National Council of Teachers of Mathematics.
  40. Lampert, M. (2001). Teaching problems and the problems of teaching. Yale University Press.
  41. Lappan, G., & Phillips, E. D. (2009). Challenges in US mathematics education through a curriculum development lens. Journal of the International Society for Design and Development in Education, 1(3), 1-19.
  42. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge University Press.
  43. Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts. Princeton University Press.
  44. Leahy, S., Lyon, C., Thompson, M., & Wiliam, D. (2005). Classroom assessment: Minute by minute and day by day. Educational Leadership, 63(3), 18-24.
  45. Leatham, K. R., Peterson, B. E., Stockero, S. L., & Van Zoest, L. R. (2015). Conceptualising mathematically significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics Education, 46(1), 88-124. https://doi.org/10.5951/jresematheduc.46.1.0088
  46. Lehrer, R., & Schauble, L. (2000). Developing model-based reasoning in mathematics and science. Journal of Applied Development Psychology, 21(1), 39-48. https://doi.org/10.1016/S0193-3973(99)00049-0
  47. Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635-679. https://doi.org/10.3102/00028312041003635
  48. Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701-724. https://doi.org/10.1002/sce.20475
  49. Leinhard, G., & Steele, M. D. (2005). Seeing the complexity of standing to the side: Instructional dialogues. Cognition and Instruction, 23(1), 87-163. https://doi.org/10.1207/s1532690xci2301_4
  50. McDuffie, A., Choppin, J., Drake, C., & Davis, J. (2018). Middle school mathematics teachers' noticing of components in mathematics curriculum materials. International Journal of Educational Research, 92, 173-187. https://doi.org/10.1016/j.ijer.2018.09.019
  51. Medina, R., & Suthers, D. (2013). Inscriptions becoming representations in representational practices. Journal of the Learning Sciences, 22(1), 33-69. https://doi.org/10.1080/10508406.2012.737390
  52. Moyer, J. C., Robison, V., & Cai, J. (2018). Attitudes of high-school students taught using traditional and reform mathematics curricula in middle school: A retrospective analysis. Educational Studies in Mathematics, 98, 115-134. https://doi.org/10.1007/s10649-018-9809-4
  53. Naftaliev, E., & Yerushalmy, M. (2013). Guiding explorations: Design principles and functions of interactive diagrams. Computers in the Schools, 30(1-2), 61-75. https://doi.org/10.1080/07380569.2013.769084
  54. National Council for Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. Author.
  55. Pepin, B., Choppin, J., Ruthven, K., & Sinclair, N. (2017). Digital curriculum resources in mathematics education: Foundations for change. ZDM, 49(5), 645-661. https://doi.org/10.1007/s11858-017-0879-z
  56. Phillips, E. D., Lappan, G., Fey, J. T., Friel, S. N., Slanger-Grant, Y., & Edson, A. J. (in press). Connected mathematics project 4 (Student and Teacher Editions). Lab-Aids.
  57. Remillard, J. T. (2016). Keeping an eye on the teacher in the digital curriculum race. In M. Bates & Z. Usiskin (Eds.), Digital curricula in school mathematics (pp. 195-204). Information Age Publishing.
  58. Remillard, J. T., & Heck, D. J. (2014). Conceptualizing the curriculum enactment process in mathematics education. ZDM, 46, 705-718. https://doi.org/10.1007/s11858-014-0600-4
  59. Rezat, S., Fan, L., & Pepin, B. (2021). Mathematics textbooks and curriculum resources as instruments for change. ZDM-Mathematics Education, 53, 1189-1206. https://doi.org/10.1007/s11858-021-01309-3
  60. Rezat, S., Visnovska, J., Trouche, L., Qi, C., & Fan, L. (2018). Present research on mathematics textbooks and teachers' resources in ICME-13: Conclusion and perspective. In L. Fan (Ed.), Research on mathematics textbooks and teachers' resources, ICME-13 monographs (pp. 343-358). Springer International Publishing.
  61. Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind, Culture, and Activity, 1(4), 209-229.
  62. Roth, W. M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35-59. https://doi.org/10.3102/00346543068001035
  63. Saldana, J. (2016). The coding manual for qualitative researchers. Sage.
  64. Schwarz, B. B., Schur, Y., Pensso, H., & Tayer, N. (2011). Perspective taking and synchronous argumentation for learning the day/night cycle. International Journal of Computer-Supported Collaborative Learning, 6(1), 113-138. https://doi.org/10.1007/s11412-010-9100-x
  65. Sherin, M. G., & Drake, C. (2009). Curriculum strategy framework: investigating patterns in teachers' use of a reform-based elementary mathematics curriculum. Journal of Curriculum Studies, 41(4), 467-500. https://doi.org/10.1080/00220270802696115
  66. Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Situating the study of teacher noticing: Seeing through teachers' eyes. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes. (pp. 3-13). Taylor and Francis.
  67. Smith, M. S., & Stein, M. K. (2011). Five practices for orchestrating productive mathematics discussion. NCTM.
  68. Squire, K. D., & Jan, M. (2007). Mad city mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 5-29. https://doi.org/10.1007/s10956-006-9037-z
  69. Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313-340. https://doi.org/10.1080/10986060802229675
  70. van Amelsvoort, M., Andriessen, J., & Kanselaar, G. (2007). Representational tools in computer-supported collaborative argumentation-based learning: How dyads work with constructed and inspected argumentative diagrams. Journal of the Learning Sciences, 16(4), 485-521. https://doi.org/10.1080/10508400701524785
  71. van Es, E. A. (2011). A framework for learning to notice student thinking. In M. G. Sherin, V. Jacobs, & R. Philipp (Eds.), Mathematics teacher noticing: Seeing through teachers' eyes (pp. 134-151). Routledge.
  72. Wagner, D., & Herbel-Eisenmann, B. (2014). Identifying authority structures in mathematics classroom discourse: A case of a teacher's early experience in a new context. ZDM, 46, 871-882. https://doi.org/10.1007/s11858-014-0587-x
  73. Wester, J. S. (2021). Students' possibilities to learn from group discussions integrated in whole-class teaching in mathematics. Scandinavian Journal of Educational Research, 65(6), 1020-1036. https://doi.org/10.1080/00313831.2020.1788148