DOI QR코드

DOI QR Code

Collaborative practices in virtual group work on dynamic geometry tasks

  • Younggon Bae (School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley) ;
  • V. Rani Satyam (Department of Mathematics and Applied Mathematics, Virginia Commonwealth University) ;
  • Zareen G. Aga (College of Education, James Madison University)
  • Received : 2024.03.12
  • Accepted : 2024.09.12
  • Published : 2024.09.30

Abstract

The goal of this study is to explore productive ways to engage students in groupwork using dynamic geometry tasks in online synchronous classroom environments. In particular, we aim to understand the social, mathematical, and technological aspects of student collaboration in virtual spaces. We analyzed how three online groups of students collaboratively worked on dynamic geometry tasks of exploring interactive kaleidoscope applets in Desmos and producing visual representations and written descriptions of geometric transformations used in the applets. The students shared their screens in Zoom as they shared their findings and discussed how to draw and write to represent the kaleidoscopes. We identified three emerging practices of the students collaboratively working on dynamic geometry tasks in online synchronous environments: (a) drawing in response, (b) co-construction, and (c) writing in real time. The emergent practices captured how students socially interacted with others, engaged in mathematical processes, and utilized technology tools. We also discuss inequity in students' participation in collaborative practices in an online environment and possible ways to ensure equitable learning opportunities for online students.

Keywords

References

  1. Alqahtani, M. M., & Powell, A. B. (2016). Instrumental appropriation of a collaborative, dynamic-geometry environment and geometrical understanding. International Journal of Education in Mathematics, Science and Technology, 4(2), 72.
  2. Alqahtani, M. M., & Powell, A. B. (2017). Mediational activities in a dynamic geometry environment and teachers' specialized content knowledge. Journal of Mathematical Behavior, 48, 77-94. https://doi.org/10.1016/j.jmathb.2017.08.004
  3. Alqahtani, M. M., & Powell, A. B. (2018). Teachers' instrumentation of a collaborative dynamic geometry environment. Horizontes, 36(1), 171-182. https://doi.org/10.24933/horizontes.v36i1.649
  4. Akyol, Z. & Garrison, R. D. (2008). The development of a community of inquiry over time in an online course: Understanding the progression and integration of social, cognitive and teaching presence. Journal of Asynchronous Learning Networks, 12(3), 3-22.
  5. Arbaugh, J. B. (2008). Does the community of inquiry framework predict outcomes in online MBA courses? International Review of Research in Open and Distance Learning, 9(2), 1-21. https://doi.org/10.19173/irrodl.v9i2.490
  6. Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14-17, 20-22, 43-46. http://hdl.handle.net/2027.42/65072
  7. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  8. Barcelos, G. T., Batista, S. C. F., & Passerino, L. M. (2011). Mediation in the construction of mathematical knowledge: A case study using dynamic geometry. Creative Education, 2(3), 252-263. http://dx.doi.org/10.4236/ce.2011.23034
  9. Barron, B. (2000). Achieving coordination in collaborative problem-solving groups. Journal of the Learning Sciences, 9(4), 403-436. https://doi.org/10.1207/S15327809JLS0904_2
  10. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. D. English, & D. Kirshner (Eds.), Handbook of international research in mathematics education (2nd ed., pp. 746-783). Routledge.
  11. Bieda, K. N., Going, T., Kursav, M., & Edson, A.J. (2020, April 17-21). Entailments of productive disciplinary engagement in technology-enhanced mathematics classrooms [Conference paper]. The 2020 American Education Research Association Annual Meeting, San Francisco.
  12. Blatchford, P., Kutnick, P., Baines, E., & Galton, M. (2003). Toward a social pedagogy of classroom groupwork. International Journal of Educational Research, 39(1-2), 153-172. https://doi.org/10.1016/S0883-0355(03)00078-8
  13. Brufee, K. A. (1995). Sharing our toys: Cooperative learning versus collaborative learning. Change: The Magazine of Higher Learning, 27(1), 12-18. https://doi.org/10.1080/00091383.1995.9937722
  14. Cohen, E. G. (1990). Continuing to cooperate: Prerequisites for persistence. The Phi Delta Kappan, 72(2), 134-138.
  15. Cohen, E. G., & Lotan, R. A. (1995). Producing equal status interaction in the heterogeneous classroom. American Educational Research Journal, 32(1), 99-120. https://doi.org/10.3102/00028312032001099
  16. Common Core State Standards Initiative. (2018). Standards for mathematical practice. Retrieved January 29, 2024, from https://corestandards.org/wp-content/uploads/2023/09/Math_Standards1.pdf
  17. Edson, A. J., Kursav, M. N., & Sharma, A. (2018). Promoting collaboration and mathematical engagement in a digital learning environment. In T. E. Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1243-1246). University of South Carolina & Clemson University.
  18. Edson, A. J., & Phillips, E.D. (2021) Connecting a teacher dashboard to a student digital collaborative environment: supporting teacher enactment of problem-based mathematics curriculum. ZDM Mathematics Education, 53, 1285-1298. https://doi.org/10.1007/s11858-021-01310-w
  19. Furman, M., & Calabrese, B. A. (2006). Voice in an urban science video project. Journal of Research in Science Teaching, 43(7), 667-695.
  20. Hegedus, S. J., & Moreno-Armella, L. (2010). Accommodating the instrumental genesis framework within dynamic technological environments. For the Learning of Mathematics, 30(1), 26-31.
  21. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific of students. Journal for Research in Mathematics Education, 39(4), 372-400.
  22. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical knowledge for teaching on student achievement. American Education Research Journal, 42(2), 371-406. https://doi.org/10.3102/00028312042002371
  23. Hoyles, C., & Noss, R. (2009). The technological mediation of mathematics and its learning. Human Development, 52(2), 129-147. https://doi.org/10.1159/000202730
  24. Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory into Practice, 38(2), 67-73. https://doi.org/10.1080/00405849909543834
  25. Koehler, M. J., & Mishra, P. (2008). Introducing TPCK. In M. J. Koehler, & P. Mishra (Eds.), Handbook of technological pedagogical content knowledge (TPCK) for educators (pp. 2-29). The AACTE Committee on Innovation and Technology. 
  26. Koschmann, T. (1996). Paradigm shifts and instructional technology. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm. (pp. 1-23). Lawrence Erlbaum.
  27. Laborde, C. (2007). The role and uses of technologies in mathematics classrooms: Between challenge and modus Vivendi. Canadian Journal of Science, Mathematics and Technology Education, 7(1), 68-92. https://doi.org/10.1080/14926150709556721
  28. Lappan, G., Phillips, E. D., Fey, J. T., & Friel, S. N. (2014). Connected Mathematics 3. Pearson.
  29. Levin, M., Smith, J. P., Karunakaran, S., Kuchle, V. A., & Castle, S. (2020). Conceptualizing STEM majors' developing agency and autonomy in undergraduate mathematics. In M. Gresalfi, & I. S. Horn (Eds.), The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020 (Volume 2, pp. 887-888). International Society of the Learning Sciences.
  30. Lonchamp, J. (2012). An instrumental perspective on CSCL systems. International Journal of Computer-Supported Collaborative Learning, 7(2), 211-237. https://doi.org/10.1007/s11412-012-9141-4
  31. Mariotti, M. A. (2000). Introduction to proof: The mediation of a dynamic environment. Educational Studies in Mathematics, 44(1-2), 25-53. https://doi.org/10.1023/A:1012733122556
  32. Medina, R., & Stahl, G. (2021). Analysis of group practices. In U. Cress, C. Rose, A. Wise, & J. Oshima (Eds.), International handbook of computer-supported collaborative learning (pp. 199-218). Springer. https://doi.org/10.1007/978-3-030-65291-3_11
  33. Miles, M. B., Huberman, A. M., & Saldana J. (2014). Qualitative data analysis: A methods sourcebook. SAGE Publication.
  34. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.
  35. Hegedus, S. J., & Moreno-Armella, L. (2009). Intersecting representation and communication infrastructures. ZDM, 41, 399-412.
  36. Patterson, A. D. (2019). Equity in groupwork: The social process of creating justice in a science classroom. Cultural Studies of Science Education, 14, 361-381. https://doi.org/10.1007/s11422-019-09918-x
  37. Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: From subject development to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429-461. https://doi.org/10.1080/14639220500078179
  38. Richardson, J.C., Arbaugh, J.C. Cleveland-Innes, M., Ice, P., Swan, K. and Garrison, D.R. (2012). Using the community of inquiry framework to inform effective instructional design. In L. Moller, & J. Huett (Eds.), The next generation of distance education (pp. 97-125). Springer. https://doi.org/10.1007/978-1-4614-1785-9_7
  39. Ruthven, K. (2012). The didactical tetrahedron as a heuristic for analysing the incorporation of digital technologies into classroom practice in support of investigative approaches to teaching mathematics. ZDM Mathematics Education, 44, 627-640. https://doi.org/10.1007/s11858-011-0376-8
  40. Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484. https://doi.org/10.1002/sce.20306
  41. Sandoval, W. A. (2003). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12(1), 5-51. https://doi.org/10.1207/S15327809JLS1201_2
  42. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260. https://doi.org/10.1080/09500690500336957
  43. Sinclair, N., & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135-150. https://doi.org/10.1080/14794800802233670
  44. Stahl, G. (2000). Collaborative information environments to support knowledge construction by communities. AI & Society, 14, 71-97. https://doi.org/10.1007/BF01206129
  45. Stahl, G. & C akir, M. (2008). Integrating synchronous and asynchronous support for group cognition in online collaborative learning. In the proceedings of the International Conference of the Learning Sciences (ICLS 2008) (pp. 351-358). International Society of the Learning Sciences.
  46. Stahl, G. (2016). Constructing dynamic triangles together: The development of mathematical group cognition. Cambridge University Press
  47. Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. https://doi.org/10.1080/1380361960020103
  48. Stephens, G. E., & Roberts, K. L. (2017). Facilitating collaboration in online groups. Journal of Educators Online, 14(1), 1-16.
  49. Tomaszewski, S. (2023). Modifying the didactical tetrahedron to describe aspects of mathematical digital collaborative learning. In Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). Alfred Renyi Institute of Mathematics; Eotvos Lorand University of Budapest.
  50. Webb, N. (2013). Information processing approaches to collaborative learning. In C. E. Hmelo-Silver (Ed.), The international handbook of collaborative learning (pp. 19-40). Routledge.