DOI QR코드

DOI QR Code

Development and validation of a portable gas chromatograph method for quantitative determination of oxygen and toxic gas impurities in medical oxygen using planar microchromatographic columns and detectors

  • Ekaterina V. Galeeva (Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products of Roszdravnadzor) ;
  • Roman R. Galeev (Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products of Roszdravnadzor) ;
  • Prachi Sharma (School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT)) ;
  • Alexander l. Khokhlov (Yaroslavl State Medical University) ;
  • Dmitry V. Somov (Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products of Roszdravnadzor) ;
  • Dmitry A. Semanov (Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products of Roszdravnadzor) ;
  • Ilshat R. Aryslanov (Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products of Roszdravnadzor) ;
  • Natalia А. Lezhnina (Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products of Roszdravnadzor) ;
  • Vladimir Platonov (Samara National Research University) ;
  • Nishant Tripathi (Samara National Research University)
  • Received : 2024.05.02
  • Accepted : 2024.08.12
  • Published : 2024.10.25

Abstract

This study examines portable Gas Chromatography (GC) for the quantitative analysis of oxygen and impurities, focusing on the development and validation of a method to determine oxygen, carbon monoxide, carbon dioxide, methane, and nitrogen in medical compressed oxygen gas. The goal is to ensure the quality of medicalgrade oxygen. The method's validation assessed its metrological characteristics, demonstrating specificity through clear chromatographic separation of the target gases and the absence of these peaks in the carrier gas chromatogram. It exhibited linearity within the designated concentration ranges, while precision met permissible standards, with the relative standard deviation for intermediate precision being less than 4% for carbon monoxide (0.00025 - 0.00099 %), less than 3 % for methane (0.0005 - 0.00246%) and carbon dioxide (0.0050 - 0.0150 %), less than 2% for nitrogen (0.1 - 0.7 %), and less than 0.01% for oxygen (99.27 - 99.98%). Overall, the validation results confirm the suitability of this analytical method for the quantitative determination of the aforementioned gases in medical compressed oxygen using portable GC with microchromatographic columns and detectors.

Keywords

Acknowledgement

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program ('PRIORITY-2030') and the Ministry of Education and Science of the Russian Federation under project FSSS-2024-0022 (Registration number: 1023112900147-4, 31.01.24).

References

  1. WHO, Oxygen. https://www.who.int/health-topics/oxygen#tab=tab_1
  2. T. Duke, S. M. Graham, M. N. Cherian, A. S. Ginsburg, M. English, S. Howie, D. Peel, P. M. Enarson, I. H. Wilson, and W. Were, Int. J. Tuberc. Lung. Dis., 14, 1362-1368 (2010). https://www. ingentaconnect.com/content/iuatld/ijtld/2010/00000014/00000011/art00002;jsessionid=ao512pks3kjnj.x-ic-live-02 10/00000014/00000011/art00002;jsessionid=ao512pks3kjnj.x-ic-live-02
  3. WHO, The life-saving power of medical oxygen, 25 February 2021. https://www.who.int/news-room/featurestories/detail/the-life-saving-power-of-medical-oxygen
  4. D. V. Somov, E. V. Galeeva, and T. S. Falaleeva, Bulletin of Roszdravnadzor, 4, 38-45 (2021).
  5. G. R. Marte, A. T. Hashmi, M. Khalid, N. Chukwuka, J. Fogel, A. M. Martinez, S. Ehrlich, M. A. Waheed, D. Sharma, S. Sharma, A. Aslam, S. Siddiqui, C. Agarwal, Y. Malyshev, C. H. Felipe, and J. Shani, J. Clin Med Res., 13, 26-37 (2021). https://doi.org/10.14740/jocmr4405
  6. State Pharmacopoeia of the Russian Federation, Medical oxygen gas, 14th Ed., Vol. 3. FS.2.20026.18. Electronic edition. https://femb.ru/record/pharmacopea14.
  7. European Pharmacopoeia, Oxygen, 11.2.01/2010:0417 Electronic edition (2010). https://pheur.edqm.eu/app/11-2/content/11-2/0417E.htm
  8. European Pharmacopoeia, Oxygen (93 Percent), 11.2.04/2011:2455, Electronic edition (2011). https://pheur.edqm.eu/app/11-2/content/11-2/2455E.htm
  9. The International Pharmacopoeia. 3rd Ed., 5 (1995). https://iris.who.int/handle/10665/60635
  10. I. A. Platonov, V. I. Platonov, Platonov, and I. Y. Roshchupkina, Sorption and Chromatographic Processes, 18, 243-247 (2018). https://doi.org/10.17308/sorpchrom.2018.18/506
  11. I. A. Platonov, P. K. Lange, and I. N. Kolesnichenko, Meas. Tech., 58(6), 71-73 (2015). https://doi.org/10.1007/s11018-015-0782-3
  12. V. I. Platonov, D. A. Uglanov, and S. S. Dostovalova, Int. J. Mech. Eng. Robot. Res., 6(4), 305-308 (2017). https://doi.org/10.18178/ijmerr.6.4.305-308
  13. A. Y. Ivanovich, G. M. Glebovich, P. V. Igorevich, and P. I. Artemyevich, Rospatent, Patent No. 2571454 (2020). patentdb.ru/patent/2571454
  14. I. A. Platonov, Y. I. Arutyunov, V. I. Platonov, M. Y. Anisimov, and S. S. Matveev, Rospatent, Patent No. 2634077 (2017). patents.google.com/patent/RU2660392C1/ru, [patentdb.ru/patent/2634077]
  15. A. Y. Ivanovich, G. M. Glebovich, P. V. Igorevich, and P. I. Artemyevich, Rospatent, Patent No. 2571451 (2017). patentdb.ru/patent/2615053, [patentdb.ru/patent/2571451].