• Title/Summary/Keyword: medical gases

Search Result 59, Processing Time 0.03 seconds

Development and validation of a portable gas chromatograph method for quantitative determination of oxygen and toxic gas impurities in medical oxygen using planar microchromatographic columns and detectors

  • Ekaterina V. Galeeva;Roman R. Galeev;Prachi Sharma;Alexander l. Khokhlov;Dmitry V. Somov;Dmitry A. Semanov;Ilshat R. Aryslanov;Natalia А. Lezhnina;Vladimir Platonov;Nishant Tripathi
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.261-270
    • /
    • 2024
  • This study examines portable Gas Chromatography (GC) for the quantitative analysis of oxygen and impurities, focusing on the development and validation of a method to determine oxygen, carbon monoxide, carbon dioxide, methane, and nitrogen in medical compressed oxygen gas. The goal is to ensure the quality of medicalgrade oxygen. The method's validation assessed its metrological characteristics, demonstrating specificity through clear chromatographic separation of the target gases and the absence of these peaks in the carrier gas chromatogram. It exhibited linearity within the designated concentration ranges, while precision met permissible standards, with the relative standard deviation for intermediate precision being less than 4% for carbon monoxide (0.00025 - 0.00099 %), less than 3 % for methane (0.0005 - 0.00246%) and carbon dioxide (0.0050 - 0.0150 %), less than 2% for nitrogen (0.1 - 0.7 %), and less than 0.01% for oxygen (99.27 - 99.98%). Overall, the validation results confirm the suitability of this analytical method for the quantitative determination of the aforementioned gases in medical compressed oxygen using portable GC with microchromatographic columns and detectors.

Bio-gas Production from Nemopilema nomurai Using Anaerobic Digestion (혐기성 소화를 이용한 노무라입깃 해파리로부터 바이오 가스 생산)

  • Kim, Ji-Youn;Lee, Sung-Mok;Kim, Jong-Hun;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • The recent bloom of a very large jellyfish Nemopilema nomurai has caused a danger to sea fishery and sea bathers. Presently, Nemopilema nomurai is thrown away through a separator system in the sea. The objective of this work was to produce bio-gas from Nemopilema nomurai by using anaerobic digestion. The bio-gas includes the hydrogen or the methane gases. It relates that Nemopilema nomurai is effectually changed into the renewable energy. When the jellyfish biomass was used as an organic carbon source the bio-gases were evolved. The aim of this study was to determine the optimal conditions for hydrogen and methane gases production according to the substrate concentrations of Nemopilema nomurai, optimal culture condition and the sludge-pretreatment without pH control. The optimal culture condition was found to be $35^{\circ}C$ and the heat-treatments of jellyfish was done at $120^{\circ}C$ for 30 min. The production rate of hydrogen and methane gas were found to be 8.8 mL/L/h, 37.2 mL/L/h from 1.5 g of dry Nemopilema nomurai.

Analysis of COPD Patient's Exhaled Breath Using Sensor Array (센서 어레이를 사용한 COPD 환자의 호기분석)

  • Yu, Joon-Boo;Lee, Shin-Yup;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-222
    • /
    • 2013
  • The exhaled breath contains gases generated from human body. When disease occurs in the body, exhaled breath may include gas components released from disease metabolism. If we can find specific elements through analysis of the exhaled gases, this approach is an effective way to diagnose the disease. The lung function has a close relationship with exhalation. Exhaled gases from COPD (Chronic Obstructive Pulmonary Disease) patients can be analyzed by gas chromatography-mass spectroscopy (GC-MS) and a gas sensor system. The exhaled breath for healthy person and COPD patients had different components. Significantly more benzendicarboxylic acid was detected from COPD patients than in healthy persons. In addition, patients had a variety of decane. Phosphorous compounds with different isomers were detected from patients. The results obtained by gas sensor system were processed by PCA (Principal Component Analysis). The PCA results revealed distinct difference between the patients and healthy people.

Relationship Between Cognitive Function and Arterial Blood Gases in Chronic Obstructive Pulmonary Disease (만성 폐쇄성 폐질환 환자의 인지기능과 동맥혈가스와의 상관 관계)

  • Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Han, Ki-Don;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.1
    • /
    • pp.7-14
    • /
    • 1992
  • Background: Cognitive deficit by hypoxia and/or hypercapnia is one of neuropsychological impairments frequently observed in patients with chronic obstructive pulmonary disease (COPD). The degree of cognitive deficit is variable among patients with similar level of hypoxia and/or hypercapnia, although a cause of this individual difference is well not known. COPD can be divided into two characteristic clinical entities including predominant emphysema and predominant bronchitis. This study was designed to evaluate the individual difference in cognitive deficit respond to hypoxia and/or hypercapnia in patients with COPD. Method: Sixteen patients with COPD (9 emphysema-dominant and 7 bronchitis-dominant) participated in this study. On admission arterial blood gas analysis and trail-making B (TMB) test for the evaluation of cognitive function were done in all patients. Mean TMB scores and the correlations between TMB scores and arterial blood gases were compared between two clinical groups. Results: 1) Mean TMB scores and arterial blood gases between two clinical groups were not different. 2) There was a tendency to be higher TMB score in hypoxemia, acidemia, and hypercapnia. However these findings were not statistically significant. 3) In emphysema-dominant group, $PaCO_2$ was mostly well correlated with TMB score (r=0.693). 4) In bronchitis-dominant group, arterial pH was mostly well correlated with TMB score (r=-0.526). Conclusion: Our data suggest that the individual difference in cognitive deficit respond to hypoxia and/or hypercapnia in patients with COPD may be dependent on their clinical entities, and arterial blood gases mostly well correlated with cognitive function that may be different according to their clinical entities.

  • PDF

Study of the Density of Smoke and Harmful Gases of Adhesive Indirect Moxibustion (접착식 간접구의 연기 밀도 및 유해가스 발생 확인 연구)

  • Kim, Eun-Jung;Kim, Yu-Jong;Hwang, Ji-Hoo;Cho, Hyun-Seok;Kim, Kyung-Ho;Lee, Seung-Deok;Kim, Kap-Sung
    • The Journal of Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.42-51
    • /
    • 2012
  • Objectives: We measured the density of smoke and harmful gases emitted from burning adhesive indirect moxa. Through the test we aimed to find out if there was an excessive amount of smoke emitted and if it included harmful gases. Methods: 9 types of adhesive indirect moxa were chosen. The buffer layers which do not burn during treatment were removed and 10g of each moxa were made into powder and put into a holder. A smoke density chamber (Smoke Density Chamber FTT. U.K) and Fourier transform infrared spectroscopy (FT-IR I 4001. MIDAC U.S.A.) were used to measure the density of smoke and harmful gases emitted from burning moxa by ISO 5659-2 test. Results: The result of measuring maximum smoke density showed that the regular indirect adhesive moxa (A-F) emitted high density smoke of 172.1-291.4Ds. The smokeless moxas, Seoam moxas, emitted the least amount of 3.4-5.5Ds. Concentrations of 7 typical harmful gases (CO, HCl, HCN, HBr, HF, SO2, NOx) were measured and all of the moxas emitted CO due to incomplete combustion. 4 types of moxa emitted NOx and all smokless moxas emitted NOx. HBr, HCN, HCl, HF, SO2 were not found in any of the moxas. Conclusions: The amount of harmful gases emitted from burning moxa was much lower than short-term exposure standards of chemical and physical factors (Ministry of Labor 2010-44). Further experiments measuring gases from moxa combustion should be done in larger environments similar to normal medical clinics.

A Study on DNA Degeneration by Comet Assay & Pathological Observation for Mouse Which were Exposed HCN Gases from Fire (화재로 인한 HCN 가스에 노출된 마우스의 병리학적 관찰 및 단세포 전기영동법을 사용한 DNA 변성 추적에 관한 연구)

  • Cho, Nam-Wook;Oh, Eun-Ha;Hwang, Sung-Kwy
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.7-16
    • /
    • 2012
  • Combustion Toxic Effects among several factors of risk encountered during fire are important in the evacuation and final survival, and they are broader and fatal than the direct damages caused by flame. Most studies on fire toxicity until the present are limited to fatality, mainly deaths by fire through pathological research. In this study, it is conducted as a fundamental experiment to address 3 principles of animal experiment and to provide an alternative test to animal testing that is regulated by national building codes and it was conducted through approval by the animal testing ethics committee. Hence, in this study average time of activity stop was measured after directly inhaling toxic gases (HCN) to laboratory animals (mice) through gas toxicity test (KS F 2271) for major asphyxiating gases(HCN) which are produced during fire combustion. effects of Combustion toxic gases on body were quantitatively analyzed through changes in internal organs and hematological analysis, and electrophoresis of a single cell of these laboratory animals. Biological conclusion of combustion toxicology is drawn through approaches (pathological examination, blood test, blood biochemical test, electrophoresis analysis of single cell) which could not confirmed in existing gas toxicity test.

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Evaluation of gaseous concentrations, bacterial diversity and microbial quantity in different layers of deep litter system

  • Li, Jing;Wang, Jingyu;Wang, Fujin;Wang, Aiguo;Yan, Peishi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2017
  • Objective: An experiment was conducted to investigate the environment of the deep litter system and provided theoretical basis for production. Methods: The bedding samples were obtained from a pig breeding farm and series measurements associated with gases concentrations and the bacterial diversity as well as the quantity of Escherichia coli, Lactobacilli, Methanogens were performed in this paper. Results: The concentrations of $CO_2$, $CH_4$, and $NH_3$ in the deep litter system increased with the increasing of depth while the $N_2O$ concentrations increased fiercely from the 0 cm to the -10 cm depth but then decreased beneath the -10 cm depth. Meanwhile, the Shannon index, the dominance index as well as the evenness index at the -20 cm layer was significantly different from the other layers (p<0.05). On the other hand, the quantity of Escherichia coli reached the highest value at the surface beddings and there was a significant drop at the -20 cm layer with the increasing depth. The Lactobacilli numbers increased with the depth from 0 cm to -15 cm and then decreased significantly under the -20 cm depth. The expression of Methanogens reached its largest value at the depth of -35 cm. Conclusion: The upper layers (0 cm to -5 cm) of this system were aerobic, the middle layers (-10 cm to -20 cm) were micro-aerobic, while that the bottom layers (below -20 cm depth) were anaerobic. In addition, from a standpoint of increasing the nitrification pathway and inhibiting the denitrification pathway, it should be advised that the deep litter system should be kept aerobic.

Acute Respiratory Distress Due to Methane Inhalation

  • Jo, Jun Yeon;Kwon, Yong Sik;Lee, Jin Wook;Park, Jae Seok;Rho, Byung Hak;Choi, Won-Il
    • Tuberculosis and Respiratory Diseases
    • /
    • v.74 no.3
    • /
    • pp.120-123
    • /
    • 2013
  • Inhalation of toxic gases can lead to pneumonitis. It has been known that methane gas intoxication causes loss of consciousness or asphyxia. There is, however, a paucity of information about acute pulmonary toxicity from methane gas inhalation. A 21-year-old man was presented with respiratory distress after an accidental exposure to methane gas for one minute. He came in with a drowsy mentality and hypoxemia. Mechanical ventilation was applied immediately. The patient's symptoms and chest radiographic findings were consistent with acute pneumonitis. He recovered spontaneously and was discharged after 5 days without other specific treatment. His pulmonary function test, 4 days after methane gas exposure, revealed a restrictive ventilatory defect. In conclusion, acute pulmonary injury can occur with a restrictive ventilator defect after a short exposure to methane gas. The lung injury was spontaneously resolved without any significant sequela.

A Study for Bioassay on the HBr Combustion Toxity (생물학적 분석을 통한 HBr의 연소 독성에 관한 연구)

  • Cho, Nam-Wook;Shin, Hyun-Joon;Lee, In-Ku;Oh, Eun-Ha
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.545-551
    • /
    • 2012
  • Due to the use of polymeric materials in construction materials, the fire combustion gases that occur in the fire are various. The one of combustion gases, HBr is measured to evaluate the toxicity of the combustion gases in the FTP Code Part 2, Standard NES 713 and Standard BS 6853. According to the MSDS, Inhalation of HBr gas especially cause burn, respiratory dysfunction, headache, etc. The people who are exposed to 50ppm of HBr gas, very irritant gas may also frequently result in both immediate death and post-exposure deaths due to pulmonary complications. In this paper, we conduct a research on the combustion toxicity of HBr gas hazardous test which is motility measurement of the mice exposed to the HBr standard gas comparing the biological analysis result.