Abstract
In tomographic image reconstruction, the focus is on developing CT image reconstruction methods that can maintain high image quality while reducing patient radiation exposure. Typically, statistical image reconstruction methods have the ability to generate high-quality and accurate images while significantly reducing patient radiation exposure. However, in cases like CT image reconstruction, which involve multi-dimensional parameter estimation, the degree of the Hessian matrix of the penalty function is very large, making it impossible to calculate. To solve this problem, the author proposed the PEMG-1 algorithm. However, the PEMG-1 algorithm has issues with the convergence speed, which is typical of statistical image reconstruction methods, and increasing the penalty log-likelihood. In this study, we propose a reconstruction algorithm that ensures fast convergence speed and monotonic increase in likelihood. The basic structure of this algorithm involves sequentially updating groups of pixels instead of updating all parameters simultaneously with each iteration.
토머그래피 영상재구성에서 초점은 높은 이미지 품질을 유지하면서 환자의 방사선 노출을 줄일 수 있는 CT 영상재구성 방법을 개발하는 것이다. 일반적으로 통계적 영상재구성 방법은 고품질 및 정확한 이미지를 생성할 수 있는 능력을 개선하면서 환자의 방사선 노출을 크게 줄일 수 있다. 그런데 CT 영상재구성과 같은 다차원의 모수 추정인 경우에서는 그것의 페널티 함수의 헤이지안 행렬의 역행렬 차수가 매우 크기 때문에 구할 수가 없다. 이러한 문제점을 해결하기 위하여 저자는 PEMG-1 알고리즘을 제안하였다. 그러나 PEMG-1 알고리즘은 일반 통계적 영상재구성 방법처럼 페널티 로그우도를 증가시키는 수렴속도에 문제점이 있다. 이에 본 연구에서는 수렴속도가 빠르고 우도의 단조 증가성을 보장하는 재구성 알고리즘을 제안한다. 이 알고리즘의 기본 구조는 반복마다 모수들을 동시에 갱신하지 않고 몇 개의 픽셀로 이루어진 그룹들을 순차적으로 갱신하는 방법이다.