Communications for Statistical Applications and Methods
/
v.3
no.2
/
pp.239-247
/
1996
본 연구에서는 패널티화 대수우도 함수의 해를 구하기 위해 Lange (1995)의 EMG 알고리즘을 적용할 경우에 발생하는 문제점을 제시하고 이를 해결하기 위해 OSLG알고리즘은 EMG 알고리즘이나 Green (1990)의 OSL 알고리즘으로 해결할 수 없는 문제에 쉽게 적용된다. 한편 이 알고리즘은 EMG 알고리즘의 변형이지만 OSL 알고리즘과 같은 국소수렴성질을 갖는다. OSLG 알고리즘은 특히 페널티함수에 대한 2차 도함수행렬이 대각행렬이 아닌 응용분야에서 매우 유용하게 사용될 수 있을 것으로 기대된다.
Journal of rehabilitation welfare engineering & assistive technology
/
v.7
no.2
/
pp.69-74
/
2013
In this paper, we propose the pattern classification algorithm of recognizing wrist movements based on electromyogram(EMG) to raise the recognition rate. We consider 30 characteristics of EMG signals wirh the root mean square(RMS) and the difference absolute standard deviation value(DASDV) for the extraction of precise features from EMG signals. To get the groups of each wrist movement, we estimated 2-dimension features. On this basis, we divide each group into two parts with mean to compare and promote the recognition rate of pattern classification effectively. For the motion classification based on EMG, the k-nearest neighbor(k-NN) is used. In this paper, the recognition rate is 92.59% and 0.84% higher than the study before.
Journal of rehabilitation welfare engineering & assistive technology
/
v.5
no.1
/
pp.95-101
/
2011
In this paper, we propose the gaussian mixture model based pattern classification algorithm of forearm electromyogram. We define the motion of 1-degree of freedom as holding and unfolding hand considering a daily life for patient with prosthetic hand. For the extraction of precise features from the EMG signals, we use the difference absolute mean value(DAMV) and the mean absolute value(MAV) to consider amplitude characteristic of EMG signals. We also propose the D_DAMV and D_MAV in order to classify the amplitude characteristic of EMG signals more precisely. In this paper, we implemented a test targeting four adult male and identified the accuracy of EMG pattern classification of two motions which are holding and unfolding hand.
This study was designed to develop a new algorithm to extract the voluntary EMG and the evoked EMG from a mixed EMG generated when the muscle is stimulated both voluntarily and by electrical stimulation in the FES system. The proposed parallel filter algorithm consists of three phases: (1) Fourier transform of the mixed EMG, (2) multiplication of the transformed signal to two frequency functions, and (3) inverse Fourier transform. Four incomplete spinal cord injured patients participated in the experiments to evaluate the algorithm by measuring the knee extensor torque and the EMG signals from the quadriceps. Two functions of the algorithms were evaluated: (1) extraction of the evoked EMG and (2) the voluntary EMG from the mixed EMG. The results showed that the algorithm enabled us to separate the two EMG components in real time from the mixed EMG. The algorithm can and will be used for estimating the voluntary torque and the evoked torque independently through an artificial neural network based on the two EMG components, and also for generating a trigger signal to control the on/off time of the FES system.
Clinical myography(EMG) is a technique for diagnosing neuromuscular disorders by analyzing the electrical signal that can be records by needle electrode during a muscular contraction. The EMG signal arises from electrical discharges that accompany the generation of force by groups of muscular fiber, and the analysis of EMG signal provides symptoms that can distinguish disorder of mLecle from disor- ders of nerve. One of the methods for analysis of EMG signal is to separate the individual discharge-the motor unit action potentials(MVAPS) - from EMG signal. But we can only observe the EMG signal that is a superimposed version of time delayed MUAPS. To obtain the information about MUAP(, i.e., position, firing number, magnitude etc), first of all, a method that can separate each MUAP from the EMG signal must be developed Although the methods for MUAP separation have been proposed by many researcherl they have required heavy computational burden. In this paper, we proposed a new method that has less computational burden and performs more reliable separation of superimposed EMG signal using wavelet filter which has multiresolution analysis as major property. As a result, we develope the separation algorithm of superimposed EMG signal which has less computational burden than any other researchers and exacutes exact separation process. The performance of this method has been discussed in the automatic resolving procedure which is neccessary to identify every firing of every motor unit from the EMG pattern.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.5
/
pp.533-539
/
2012
The purpose of this study is to estimate a validity of control signal through a design of Exoskeleton Robot Arm's capable of intelligent recognition as a human arm's motion by using realtime processed data of generated EMG signals. By an intelligent algorithm, the EMG output value of human biceps and triceps muscles contraction can be recognized and used for the control over exoskeleton arm corresponding to human's recognition and judgement. The EMG sensing data of muscles contraction and relaxation are used as the input signal from human's body to operate the Exoskeleton Robot Arm thus copying human arm motion. An intelligent control of Exoskeleton Robot Arm is to design the analog control circuit which processes the input data, and then to manufacture an integrated control board. And then abstracted signal is passed by DSP signal processing, Fuzzy logic algorithm is designed for a accurate prediction of weight or load through the intelligent algorithm, and design an Exoskeleton Robot Arm to express a human's intention.
Journal of the Korea Society of Computer and Information
/
v.10
no.2
s.34
/
pp.113-121
/
2005
In this paper, we design the hybrid learning algorithm of LVQ which is to perform EMG pattern recognition. The proposed hybrid LVQ learning algorithm is the modified Counter Propagation Networks(C.p Net. ) which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVa. The weights of the proposed C.p. Net. which is between input layer and subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVd algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights which is between subclass layer and class layer of C.p. Net. is learned to classify the classified subclass. which is enclosed a class . To classify the pattern vectors of EMG. the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.
Kim, Seongjung;Lee, Hansoo;Kim, Jongman;Ahn, Soonjae;Kim, Youngho
Journal of rehabilitation welfare engineering & assistive technology
/
v.10
no.4
/
pp.329-336
/
2016
Deaf people using sign language are experiencing social inequalities and financial losses due to communication restrictions. In this paper, real-time pattern recognition algorithm was applied to distinguish American Sign Language using an armband sensor(8-channel EMG sensors and one IMU) to enable communication between the deaf and the hearing people. The validation test was carried out with 11 people. Learning pattern classifier was established by gradually increasing the number of training database. Results showed that the recognition accuracy was over 97% with 20 training samples and over 99% with 30 training samples. The present study shows that sign language recognition using armband sensor is more convenient and well-performed.
The nonstationary identifier in the DCT domain is suggested in this study for the identification of AR parameters of above-lesion upper-trunk electromyographic (EMG) signals as a means of developing a reliable real time signal to control functional electrical stimulation (FES) in paraplegics to enable primitive walking. As paraplegic shifts his posture from one attitude to another, there is transition period where the signal is clearly nonstationary. Also as muscle fatigues, nonstationarities become more prevalent even during stable postures. So, it requires a develpment of time varying nonstationary EMG signal identifier. In this paper, time varying nonstationary EMG signals are transformed into DCT domain and the transformed EMG signals are modeled and analyzed in the transform domain. In the DCT domain, we verified reduction of condition number and increment of the smallest eigenvalue of input correlation matrix that influences numerical properties and mean square error were compared with SLS algorithm, and the proposed algorithm is implemented using IMS T-805 parallel processing computer for real time application.
Park, Seongsik;Lee, Hyun-Joo;Chung, Wan Kyun;Kim, Keehoon
The Journal of Korea Robotics Society
/
v.14
no.3
/
pp.211-220
/
2019
Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.