DOI QR코드

DOI QR Code

SIGN CHANGES OF THE COEFFICIENTS OF TRIPLE PRODUCT L-FUNCTIONS

  • Huixue Lao (School of Mathematics and Statistics Shandong Normal University) ;
  • Fengjiao Qiao (School of Mathematics and Statistics Shandong Normal University)
  • Received : 2023.02.20
  • Accepted : 2023.04.19
  • Published : 2024.09.01

Abstract

Let f(z) be a primitive holomorphic cusp form and g(z) be a Maass cusp form. In this paper, we give quantitative results for the sign changes of coefficients of triple product L-functions L(f × f × f, s) and L(f × f × g, s).

Keywords

Acknowledgement

This work was financially supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2018MA003).

References

  1. S. Banerjee and M. K. Pandey, Signs of Fourier coefficients of cusp form at sum of two squares, Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 2, 9 pp. https://doi.org/10.1007/s12044-019-0534-4
  2. J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), no. 1, 205-224. https://doi.org/10.1090/jams/860
  3. K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136. https://doi.org/10.2307/1970267
  4. P. Deligne, La conjecture de Weil, Inst. Hautes Etudes Sci. Publ. Math. 43 (1974), 29-39. https://doi.org/10.1007/BF02684373
  5. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), no. 4, 471-542. http://www.numdam.org/item?id=ASENS_1978_4_11_4_471_0 https://doi.org/10.24033/asens.1355
  6. A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), no. 2, 278-295 (1983). https://doi.org/10.1112/S0025579300012377
  7. J. L. Hafner and A. P. Ivic, On sums of Fourier coefficients of cusp forms, Enseign. Math. (2) 35 (1989), no. 3-4, 375-382.
  8. X. He, Integral power sums of Fourier coefficients of symmetric square L-functions, Proc. Amer. Math. Soc. 147 (2019), no. 7, 2847-2856. https://doi.org/10.1090/proc/14516
  9. D. R. Heath-Brown, Hybrid bounds for L-functions: a q-analogue of van der Corput's method and a t-analogue of Burgess method, Academic Press, 121-126, 1981.
  10. G. D. Hua, On sign changes and non-vanishing problems of Fourier coefficients in modular forms, Ph. D. Thesis, Shandong University, 2022.
  11. A. P. Ivic, Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar. 15 (1980), no. 1-3, 157-181.
  12. A. P. Ivic, On zeta-functions associated with Fourier coefficients of cusp forms, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), 231-246, Univ. Salerno, Salerno.
  13. Y. Jiang and G. Lu, On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms, Acta Arith. 166 (2014), no. 3, 231-252. https://doi.org/10.4064/aa166-3-2
  14. Y. Jiang and G. Lu, Sums of coefficients of L-functions and applications, J. Number Theory 171 (2017), 56-70. https://doi.org/10.1016/j.jnt.2016.07.005
  15. Y. Jiang, G. Lu, and X. Yan, Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for SL(m, ℤ), Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 2, 339-356. https://doi.org/10.1017/S030500411600027X
  16. H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 (with Appendix 1 by D. Ramakrishnan and Appendix 2 by H. H. Kim and P. Sarnak), J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. https://doi.org/10.1090/S0894-0347-02-00410-1
  17. H. H. Kim, Automorphic L-functions, Lectures on Automorphic L-functions, 97-201, Fields Inst. Monogr. 20, Amer. Math. Soc., Providence, RI, 2004.
  18. H. H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math. (2) 155 (2002), no. 3, 837-893. https://doi.org/10.2307/3062134
  19. C. I. Kuan, Hybrid bounds on twisted L-functions associated with modular forms, J. Number Theory 189 (2018), 380-416. https://doi.org/10.1016/j.jnt.2018.02.002
  20. M. Kumari and M. R. Murty, Simultaneous non-vanishing and sign changes of Fourier coefficients of modular forms, Int. J. Number Theory 14 (2018), no. 8, 2291-2301. https://doi.org/10.1142/S1793042118501397
  21. M. Kumari and J. Sengupta, The first simultaneous sign change for Fourier coefficients of Hecke-Maass forms, Ramanujan J. 55 (2021), no. 1, 205-218. https://doi.org/10.1007/s11139-020-00268-9
  22. H. X. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar. 160 (2020), no. 1, 58-71. https://doi.org/10.1007/s10474-019-00996-5
  23. H. Lao and S. Luo, Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms, Rocky Mountain J. Math. 51 (2021), no. 5, 1701-1714. https://doi.org/10.1216/rmj.2021.51.1701
  24. H. Lao, M. McKee, and Y. Ye, Asymptotics for cuspidal representations by functoriality from GL(2), J. Number Theory 164 (2016), 323-342. https://doi.org/10.1016/j.jnt.2016.01.008
  25. Y. Lin, R. Nunes, and Z. Qi, Strong subconvexity for self-dual GL(3) L-functions, Int. Math. Res. Not. IMRN 2023 (2023), no. 13, 11453-11470. https://doi.org/10.1093/imrn/rnac153
  26. H. Liu, S. Li, and D. Zhang, Power moments of automorphic L-function attached to Maass forms, Int. J. Number Theory 12 (2016), no. 2, 427-443. https://doi.org/10.1142/S1793042116500251
  27. D. Lowry-Duda, Sign changes of cusp form coefficients on indices that are sums of two squares, preprint, 2021.
  28. G. Lu, On averages of Fourier coefficients of Maass cusp forms, Arch. Math. (Basel) 100 (2013), no. 3, 255-265. https://doi.org/10.1007/s00013-013-0494-3
  29. G. Lu and A. Sankaranarayanan, On the coefficients of triple product L-functions, Rocky Mountain J. Math. 47 (2017), no. 2, 553-570. https://doi.org/10.1216/RMJ-2017-47-2-553
  30. J. Meher and M. R. Murty, Sign changes of Fourier coefficients of half-integral weight cusp forms, Int. J. Number Theory 10 (2014), no. 4, 905-914. https://doi.org/10.1142/S1793042114500067
  31. M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann. 262 (1983), no. 4, 431-446. https://doi.org/10.1007/BF01456059
  32. J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. Inst. Hautes Etudes Sci. 134 (2021), 117-152. https://doi.org/10.1007/s10240-021-00126-4
  33. C. D. Pan and C. B. Pan, Fundamentals of Analytic Number Theory (in Chinese), Science Press, Beijing, 1991.
  34. A. Perelli, General L-functions, Ann. Mat. Pura Appl. 130 (1982), 287-306. https://doi.org/10.1007/BF01761499
  35. H. C. Tang, A shifted convolution sum of d3 and the Fourier coefficients of Hecke-Maass forms II, Bull. Aust. Math. Soc. 101 (2020), 401-414. https://doi.org/10.1017/S000497271900100X
  36. C. R. Xu, General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares, J. Number Theory 236 (2022), 214-229. https://doi.org/10.1016/j.jnt.2021.07.017
  37. A. Zou, H. Lao, and S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math. 2021, Art. ID 2462693, 12 pp. https://doi.org/10.1155/2021/2462693