Acknowledgement
This work was financially supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2018MA003).
References
- S. Banerjee and M. K. Pandey, Signs of Fourier coefficients of cusp form at sum of two squares, Proc. Indian Acad. Sci. Math. Sci. 130 (2020), no. 1, Paper No. 2, 9 pp. https://doi.org/10.1007/s12044-019-0534-4
- J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), no. 1, 205-224. https://doi.org/10.1090/jams/860
- K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136. https://doi.org/10.2307/1970267
- P. Deligne, La conjecture de Weil, Inst. Hautes Etudes Sci. Publ. Math. 43 (1974), 29-39. https://doi.org/10.1007/BF02684373
- S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), no. 4, 471-542. http://www.numdam.org/item?id=ASENS_1978_4_11_4_471_0 https://doi.org/10.24033/asens.1355
- A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), no. 2, 278-295 (1983). https://doi.org/10.1112/S0025579300012377
- J. L. Hafner and A. P. Ivic, On sums of Fourier coefficients of cusp forms, Enseign. Math. (2) 35 (1989), no. 3-4, 375-382.
- X. He, Integral power sums of Fourier coefficients of symmetric square L-functions, Proc. Amer. Math. Soc. 147 (2019), no. 7, 2847-2856. https://doi.org/10.1090/proc/14516
- D. R. Heath-Brown, Hybrid bounds for L-functions: a q-analogue of van der Corput's method and a t-analogue of Burgess method, Academic Press, 121-126, 1981.
- G. D. Hua, On sign changes and non-vanishing problems of Fourier coefficients in modular forms, Ph. D. Thesis, Shandong University, 2022.
- A. P. Ivic, Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar. 15 (1980), no. 1-3, 157-181.
- A. P. Ivic, On zeta-functions associated with Fourier coefficients of cusp forms, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), 231-246, Univ. Salerno, Salerno.
- Y. Jiang and G. Lu, On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms, Acta Arith. 166 (2014), no. 3, 231-252. https://doi.org/10.4064/aa166-3-2
- Y. Jiang and G. Lu, Sums of coefficients of L-functions and applications, J. Number Theory 171 (2017), 56-70. https://doi.org/10.1016/j.jnt.2016.07.005
- Y. Jiang, G. Lu, and X. Yan, Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for SL(m, ℤ), Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 2, 339-356. https://doi.org/10.1017/S030500411600027X
- H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2 (with Appendix 1 by D. Ramakrishnan and Appendix 2 by H. H. Kim and P. Sarnak), J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. https://doi.org/10.1090/S0894-0347-02-00410-1
- H. H. Kim, Automorphic L-functions, Lectures on Automorphic L-functions, 97-201, Fields Inst. Monogr. 20, Amer. Math. Soc., Providence, RI, 2004.
- H. H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math. (2) 155 (2002), no. 3, 837-893. https://doi.org/10.2307/3062134
- C. I. Kuan, Hybrid bounds on twisted L-functions associated with modular forms, J. Number Theory 189 (2018), 380-416. https://doi.org/10.1016/j.jnt.2018.02.002
- M. Kumari and M. R. Murty, Simultaneous non-vanishing and sign changes of Fourier coefficients of modular forms, Int. J. Number Theory 14 (2018), no. 8, 2291-2301. https://doi.org/10.1142/S1793042118501397
- M. Kumari and J. Sengupta, The first simultaneous sign change for Fourier coefficients of Hecke-Maass forms, Ramanujan J. 55 (2021), no. 1, 205-218. https://doi.org/10.1007/s11139-020-00268-9
- H. X. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar. 160 (2020), no. 1, 58-71. https://doi.org/10.1007/s10474-019-00996-5
- H. Lao and S. Luo, Sign changes and nonvanishing of Fourier coefficients of holomorphic cusp forms, Rocky Mountain J. Math. 51 (2021), no. 5, 1701-1714. https://doi.org/10.1216/rmj.2021.51.1701
- H. Lao, M. McKee, and Y. Ye, Asymptotics for cuspidal representations by functoriality from GL(2), J. Number Theory 164 (2016), 323-342. https://doi.org/10.1016/j.jnt.2016.01.008
- Y. Lin, R. Nunes, and Z. Qi, Strong subconvexity for self-dual GL(3) L-functions, Int. Math. Res. Not. IMRN 2023 (2023), no. 13, 11453-11470. https://doi.org/10.1093/imrn/rnac153
- H. Liu, S. Li, and D. Zhang, Power moments of automorphic L-function attached to Maass forms, Int. J. Number Theory 12 (2016), no. 2, 427-443. https://doi.org/10.1142/S1793042116500251
- D. Lowry-Duda, Sign changes of cusp form coefficients on indices that are sums of two squares, preprint, 2021.
- G. Lu, On averages of Fourier coefficients of Maass cusp forms, Arch. Math. (Basel) 100 (2013), no. 3, 255-265. https://doi.org/10.1007/s00013-013-0494-3
- G. Lu and A. Sankaranarayanan, On the coefficients of triple product L-functions, Rocky Mountain J. Math. 47 (2017), no. 2, 553-570. https://doi.org/10.1216/RMJ-2017-47-2-553
- J. Meher and M. R. Murty, Sign changes of Fourier coefficients of half-integral weight cusp forms, Int. J. Number Theory 10 (2014), no. 4, 905-914. https://doi.org/10.1142/S1793042114500067
- M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann. 262 (1983), no. 4, 431-446. https://doi.org/10.1007/BF01456059
- J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, II, Publ. Math. Inst. Hautes Etudes Sci. 134 (2021), 117-152. https://doi.org/10.1007/s10240-021-00126-4
- C. D. Pan and C. B. Pan, Fundamentals of Analytic Number Theory (in Chinese), Science Press, Beijing, 1991.
- A. Perelli, General L-functions, Ann. Mat. Pura Appl. 130 (1982), 287-306. https://doi.org/10.1007/BF01761499
- H. C. Tang, A shifted convolution sum of d3 and the Fourier coefficients of Hecke-Maass forms II, Bull. Aust. Math. Soc. 101 (2020), 401-414. https://doi.org/10.1017/S000497271900100X
- C. R. Xu, General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares, J. Number Theory 236 (2022), 214-229. https://doi.org/10.1016/j.jnt.2021.07.017
- A. Zou, H. Lao, and S. Luo, Some density results on sets of primes for Hecke eigenvalues, J. Math. 2021, Art. ID 2462693, 12 pp. https://doi.org/10.1155/2021/2462693