• Title/Summary/Keyword: two squares

Search Result 698, Processing Time 0.023 seconds

CROSS-INTERCALATES AND GEOMETRY OF SHORT EXTREME POINTS IN THE LATIN POLYTOPE OF DEGREE 3

  • Bokhee Im;Jonathan D. H. Smith
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.91-113
    • /
    • 2023
  • The polytope of tristochastic tensors of degree three, the Latin polytope, has two kinds of extreme points. Those that are at a maximum distance from the barycenter of the polytope correspond to Latin squares. The remaining extreme points are said to be short. The aim of the paper is to determine the geometry of these short extreme points, as they relate to the Latin squares. The paper adapts the Latin square notion of an intercalate to yield the new concept of a cross-intercalate between two Latin squares. Cross-intercalates of pairs of orthogonal Latin squares of degree three are used to produce the short extreme points of the degree three Latin polytope. The pairs of orthogonal Latin squares fall into two classes, described as parallel and reversed, each forming an orbit under the isotopy group. In the inverse direction, we show that each short extreme point of the Latin polytope determines four pairs of orthogonal Latin squares, two parallel and two reversed.

Orthogonal Latin squares of Choi Seok-Jeong (최석정의 직교라틴방진)

  • Kim, Sung-Sook;Khang, Mee-Kyung
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.21-31
    • /
    • 2010
  • A latin square of order n is an $n{\times}n$ array with entries from a set of n numbers arrange in such a way that each number occurs exactly once in each row and exactly once in each column. Two latin squares of the same order are orthogonal latin square if the two latin squares are superimposed, then the $n^2$ cells contain each pair consisting of a number from the first square and a number from the second. In Europe, Orthogonal Latin squares are the mathematical concepts attributed to Euler. However, an Euler square of order nine was already in existence prior to Euler in Korea. It appeared in the monograph Koo-Soo-Ryak written by Choi Seok-Jeong(1646-1715). He construct a magic square by using two orthogonal latin squares for the first time in the world. In this paper, we explain Choi' s orthogonal latin squares and the history of the Orthogonal Latin squares.

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.19-34
    • /
    • 2016
  • In this paper, we present a split least-squares characteristic mixed finite element method(MFEM) to get the approximate solutions of the convection dominated Sobolev equations. First, to manage both convection term and time derivative term efficiently, we apply a least-squares characteristic MFEM to get the system of equations in the primal unknown and the flux unknown. Then, we obtain a split least-squares characteristic MFEM to convert the coupled system in two unknowns derived from the least-squares characteristic MFEM into two uncoupled systems in the unknowns. We theoretically prove that the approximations constructed by the split least-squares characteristic MFEM converge with the optimal order in L2 and H1 normed spaces for the primal unknown and with the optimal order in L2 normed space for the flux unknown. And we provide some numerical results to confirm the validity of our theoretical results.

A Note on Estimating Parameters in The Two-Parameter Weibull Distribution

  • Rahman, Mezbahur;Pearson, Larry M.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1091-1102
    • /
    • 2003
  • The Weibull variate is commonly used as a lifetime distribution in reliability applications. Estimation of parameters is revisited in the two-parameter Weibull distribution. The method of product spacings, the method of quantile estimates and the method of least squares are applied to this distribution. A comparative study between a simple minded estimate, the maximum likelihood estimate, the product spacings estimate, the quantile estimate, the least squares estimate, and the adjusted least squares estimate is presented.

  • PDF

AN ALGORITHM FOR ESTIMATION OF ROTATION MATRIX PARAMETER

  • Shin, Dong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.409-417
    • /
    • 2003
  • There are two rotation matrix parameters in a model, pro-posed by Prentice in 1989, for pairs of rotations in 3 dimensional space. For the least squares estimates of the two parameters, an algorithm was also presented, but it turned out that the algorithm could fail to get the least squares estimates. This article provides another algorithm for the least squares estimates and its performance is demonstrated by simulation results.

Performance Comparison of Two Ellipse Fitting-Based Cell Separation Algorithms

  • Cho, Migyung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.215-219
    • /
    • 2015
  • Cells in a culture process transform with time and produce many overlapping cells in their vicinity. We are interested in a separation algorithm for images of overlapping cells taken using a fluorescence optical microscope system during a cell culture process. In this study, all cells are assumed to have an ellipse-like shape. For an ellipse fitting-based method, an improved least squares method is used by decomposing the design matrix into quadratic and linear parts for the separation of overlapping cells. Through various experiments, the improved least squares method (numerically stable direct least squares fitting [NSDLSF]) is compared with the conventional least squares method (direct least squares fitting [DLSF]). The results reveal that NSDLSF has a successful separation ratio with an average accuracy of 95% for two overlapping cells, an average accuracy of 91% for three overlapping cells, and about 82% accuracy for four overlapping cells.

PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS

  • Shin, Byeong-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1291-1310
    • /
    • 2013
  • This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.

On the generalized truncated least squares adaptive algorithm and two-stage design method with application to adaptive control

  • Yamamoto, Yoshihiro;Nikiforuk, Peter-N.;Gupta, Madam-M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.7-12
    • /
    • 1993
  • This paper presents a generalized truncated least, squares adaptive algorithm and a two-stage design method. The proposed algorithm is directly derived from the normal equation of the generalized truncated least squares method (GTLSM). The special case of the GTLSM, the truncated least squares (TLS) adaptive algorithm, has a distinct features which includes the case of minimum steps estimator. This algorithm seemed to be best in the deterministic case. For real applications in the presence of disturbances, the GTLS adaptive algorithm is more effective. The two-stage design method proposed here combines the adaptive control system design with a conventional control design method and each can be treated independently. Using this method, the validity of the presented algorithms are examined by the simulation studies of an indirect adaptive control.

  • PDF

Expressions for Shrinkage Factors of PLS Estimator

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1169-1180
    • /
    • 2006
  • Partial least squares regression (PLS) is a biased, non-least squares regression method and is an alternative to the ordinary least squares regression (OLS) when predictors are highly collinear or predictors outnumber observations. One way to understand the properties of biased regression methods is to know how the estimators shrink the OLS estimator. In this paper, we introduce an expression for the shrinkage factor of PLS and develop a new shrinkage expression, and then prove the equivalence of the two representations. We use two near-infrared (NIR) data sets to show general behavior of the shrinkage and in particular for what eigendirections PLS expands the OLS coefficients.

  • PDF