DOI QR코드

DOI QR Code

DIFFERENT CHARACTERIZATIONS OF CURVATURE IN THE CONTEXT OF LIE ALGEBROIDS

  • Rabah Djabri (Department of Operations Research University of Bejaia)
  • Received : 2023.06.15
  • Accepted : 2024.05.14
  • Published : 2024.09.01

Abstract

We consider a vector bundle map F : E1 → E2 between Lie algebroids E1 and E2 over arbitrary bases M1 and M2. We associate to it different notions of curvature which we call A-curvature, Q-curvature, P-curvature, and S-curvature using the different characterizations of Lie algebroid structure, namely Lie algebroid, Q-manifold, Poisson and Schouten structures. We will see that these curvatures generalize the ordinary notion of curvature defined for a vector bundle, and we will prove that these curvatures are equivalent, in the sense that F is a morphism of Lie algebroids if and only if one (and hence all) of these curvatures is null. In particular we get as a corollary that F is a morphism of Lie algebroids if and only if the corresponding map is a morphism of Poisson manifolds (resp. Schouten supermanifolds).

Keywords

References

  1. M. Bojowald, A. Kotov, and T. Strobl, Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005), no. 4, 400-426. https://doi.org/10.1016/j.geomphys.2004.11.002
  2. J. Cari˜nena and H. Figueroa, A geometrical version of Noether's theorem in supermechanics, Rep. Math. Phys. 34 (1994), no. 3, 277-303. https://doi.org/10.1016/0034-4877(94)90002-7
  3. R. Djabri, Transitive Lie algebroids and Q-manifolds, PhD thesis, Manchester University, 2011.
  4. P. J. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), no. 1, 194-230. https://doi.org/10.1016/0021-8693(90)90246-K
  5. D. A. Leites, Introduction to the theory of supermanifolds, Russian Mathematical Surveys 35 (1980), no. 1, 1-64. https://doi.org/10.1070/RM1980v035n01ABEH001545
  6. K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge Univ. Press, Cambridge, 2005. https://doi.org/10.1017/CBO9781107325883
  7. A. Yu. Vaintrob, Lie algebroids and homological vector fields, Russian Math. Surveys 52 (1997), no. 2, 428-429; translated from Uspekhi Mat. Nauk 52 (1997), no. 2(314), 161-162. https://doi.org/10.1070/RM1997v052n02ABEH001802
  8. V. S. Varadarajan, Supersymmetry for Mathematicians: An introduction, Courant Lecture Notes in Mathematics, 11, New York University, Courant Institute of Mathematical Sciences, New York, 2004. https://doi.org/10.1090/cln/011
  9. T. T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids, Quantization, Poisson Brackets and Beyond (Manchester, 2001), 131-168, Contemp. Math., 315, Amer. Math. Soc., Providence, RI. https://doi.org/10.1090/conm/315/05478
  10. T. T. Voronov, Q-manifolds and Mackenzie theory, Comm. Math. Phys. 315 (2012), no. 2, 279-310. https://doi.org/10.1007/s00220-012-1568-y