DOI QR코드

DOI QR Code

Waste to shield: Tailoring cordierite/mullite/zircon composites for radiation protection through controlled sintering and Y2O3 addition

  • Celal Avcioglu (Marmara University, Faculty of Engineering, Department of Metallurgical and Materials Engineering) ;
  • Recep Artir (Marmara University, Faculty of Engineering, Department of Metallurgical and Materials Engineering)
  • 투고 : 2023.11.05
  • 심사 : 2024.02.19
  • 발행 : 2024.07.25

초록

In this study, investment casting shell waste successfully utilized to produce cordierite/mullite/zircon composites. Green pellets, consisting of investment casting shell waste, alumina, and magnesia, were prepared and sintered at temperatures between 1250 and 1350 ℃. The influence of the sintering temperature on the crystalline phase composition, densification behavior, flexural strength, microstructure, and radiation shielding properties of the cordierite/mullite/zircon composites is investigated. Phase analysis showed that characteristic cordierite peaks appear at 1250 ℃, but the complete conversation of silica from investment casting shell waste into cordierite requires a sintering temperature of at least 1300 ℃. Notably, the cordierite/mullite/zircon composite sintered at 1350 ℃ exhibited a sixfold increase in flexural strength compared to the ceramic composite directly fabricated from investment casting shell waste at the same sintering temperature. Furthermore, the effect of Y2O3 addition on composites' radiation shielding properties is investigated. The results show that the Y2O3 addition improves densification behavior, enhancing the shielding capabilities of the composites against fast neutron and gamma radiation. Our findings suggest that the developed ceramic composites show significant potential for gamma-ray and neutron shielding applications.

키워드

과제정보

The authors would like to express their sincere gratitude to Asst. Prof. Dr. Yasar Karabul for his help with gamma-ray shielding experiments.

참고문헌

  1. P. Kalita, S. Ghosh, G. Sattonnay, U.B. Singh, V. Grover, R. Shukla, S. Amirthapandian, R. Meena, A.K. Tyagi, D.K. Avasthi, Role of temperature in the radiation stability of yttria stabilized zirconia under swift heavy ion irradiation: a study from the perspective of nuclear reactor applications, J. Appl. Phys. 122 (2017) 025902, https://doi.org/10.1063/1.4993177. 
  2. A. Aboalatta, J. Asad, M. Humaid, H. Musleh, S. Shaat, K. Ramadan, M.I. Sayyed, Y. Alajerami, N. Aldahoudi, Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications, Nucl. Eng. Technol. 53 (2021) 3058-3067, https://doi.org/10.1016/j.net.2021.04.002. 
  3. F. Akman, H. Ogul, I. Ozkan, M.R. Kacal, O. Agar, H. Polat, K. Dilsiz, Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite, Nucl. Eng. Technol. 54 (2022) 283-292, https://doi.org/10.1016/j.net.2021.07.006. 
  4. Y. Al-Hadeethi, M.I. Sayyed, Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2-MoO3-V2O5 glass system, Nucl. Eng. Technol. 55 (2023) 1218-1224, https://doi.org/10.1016/j.net.2022.12.014. 
  5. I.G. Alhindawy, H. Gamal, A. Almuqrin, M.I. Sayyed, K.A. Mahmoud, Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals, Nucl. Eng. Technol. 55 (2023) 1885-1891, https://doi.org/10.1016/j.net.2023.02.014. 
  6. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, S.A. Bassam, P.N. Naseef Mohammed, N.K. Libeesh, A.S. Sachana, M.I. Sayyed, M.S. Alqahtani, E. El Shiekh, M. U. Khandaker, The radiation shielding competence and imaging spectroscopic based studies of Iron ore region of Kozhikode district, Kerala, Nucl. Eng. Technol. 55 (2023) 2380-2387, https://doi.org/10.1016/j.net.2023.03.038. 
  7. C. Avcioglu, S. Avcioglu, Transition metal borides for all-in-one radiation shielding, Materials 16 (2023) 6496, https://doi.org/10.3390/ma16196496. 
  8. S. Avcioglu, F. Kaya, C. Kaya, Morphological evolution of boron carbide particles: sol-gel synthesis of nano/micro B4C fibers, Ceram. Int. 47 (2021) 26651-26667, https://doi.org/10.1016/j.ceramint.2021.06.073. 
  9. N. Baumann, K.M. Diaz, K. Simmons-Potter, B.G. Potter, J. Bucay, Particle loading as a design parameter for composite radiation shielding, Nucl. Eng. Technol. 54 (2022) 3855-3863, https://doi.org/10.1016/j.net.2022.05.029. 
  10. E. Beyazay, Y. Karabul, S.E. Korkut, M. Kilic, Z.G. Ozdemir, Multifunctional PCz/BaO nanocomposites: ionizing radiation shielding ability and enhanced electric conductivity, Prog. Nucl. Energy 155 (2023) 104521, https://doi.org/10.1016/j.pnucene.2022.104521. 
  11. O. Can, E. Eren Belgin, G.A. Aycik, Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester, Nucl. Eng. Technol. 53 (2021) 1642-1651, https://doi.org/10.1016/j.net.2020.11.006. 
  12. B.M. Chandrika, H.C.S. Manjunatha, K.N. Sridhar, M.R. Ambika, L. Seenappa, S. Manjunatha, R. Munirathnam, A.C. Lourduraj, Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial, Nucl. Eng. Technol. 55 (2023) 1783-1790, https://doi.org/10.1016/j.net.2023.01.012. 
  13. M.S. Eid, I.I. Bondouk, H.M. Saleh, K.M. Omar, M.I. Sayyed, A.M. El-Khatib, M. Elsafi, Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications, Nucl. Eng. Technol. 54 (2022) 1456-1463, https://doi.org/10.1016/j.net.2021.10.007. 
  14. M.Y. Hanfi, A.K. Sakr, A.M. Ismail, B.M. Atia, M.S. Alqahtani, K.A. Mahmoud, Physical characterization and radiation shielding features of B2O3As2O3 glass ceramic, Nucl. Eng. Technol. 55 (2023) 278-284, https://doi.org/10.1016/j.net.2022.09.006. 
  15. G. Hu, H. Hu, Q. Yang, B. Yu, W. Sun, Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays, Nucl. Eng. Technol. 52 (2020) 178-184, https://doi.org/10.1016/j.net.2019.07.016. 
  16. S.A. Issa, A.M. Ali, H.O. Tekin, Y.B. Saddeek, A. Al-Hajry, H. Algarni, G. Susoy, Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3, Nucl. Eng. Technol. 52 (2020) 1297-1303, https://doi.org/10.1016/j.net.2019.11.017. 
  17. T.H. Khazaalah, I.S. Mustafa, M.I. Sayyed, Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials, Nucl. Eng. Technol. 54 (2022) 4708-4714, https://doi.org/10.1016/j.net.2022.08.009. 
  18. L.F. Pires, Radiation shielding properties of weathered soils: influence of the chemical composition and granulometric fractions, Nucl. Eng. Technol. 54 (2022) 3470-3477, https://doi.org/10.1016/j.net.2022.04.002. 
  19. B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, B. Sadashivamurthy, N. Dhananjaya, K.V. Sathish, P.D. Gupta, X-ray/gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method, Nucl. Eng. Technol. 54 (2022) 1062-1070, https://doi.org/10.1016/j.net.2021.09.023. 
  20. V.G. Rudychev, N.A. Azarenkov, I.O. Girka, Y.V. Rudychev, Optimization of radiation shields made of Fe and Pb for the spent nuclear fuel transport casks, Nucl. Eng. Technol. 55 (2023) 690-695, https://doi.org/10.1016/j.net.2022.10.002. 
  21. K.V. Sathish, K.N. Sridhar, L. Seenappa, H.C. Manjunatha, Y.S. Vidya, B. Chinnappa Reddy, S. Manjunatha, A.N. Santhosh, R. Munirathnam, A.C. Raj, P.S. Damodara Gupta, B.M. Sankarshan, X-ray/gamma radiation shielding properties of Aluminium-Barium Zinc Oxide nanoparticles synthesized via low temperature solution combustion method, Nucl. Eng. Technol. 55 (2023) 1519-1526, https://doi.org/10.1016/j.net.2023.02.001. 
  22. P. Vani, G. Vinitha, M.I. Sayyed, M.M. AlShammari, N. Manikandan, Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses, Nucl. Eng. Technol. 53 (2021) 4106-4113, https://doi.org/10.1016/j.net.2021.06.009. 
  23. M. Zaid, K.A. Matori, H. Sidek, I.R. Ibrahim, Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications, Nucl. Eng. Technol. 53 (2021) 1323-1330, https://doi.org/10.1016/j.net.2020.10.006. 
  24. M.A. Zakaria, Abdul Razak, Mohammad Khairul Azhar, M.Z. Adenan, M.Z. Ahmad, S.M. Tajudin, D.O. Samson, M.Z. Abdul Aziz, Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms, Nucl. Eng. Technol. (2023), https://doi.org/10.1016/j.net.2023.10.001. 
  25. u. Alver, S.U. Duran, M.B. Demirkoz, B. Mucogllava, M. Aslan, K. Cava, F. Ozkalayci, O. Dindar, Ulexite/HDPE-Bi2O3/HDPE layered composites for neutron and gamma radiation shielding, Appl. Radiat. Isot. 200 (2023) 110940, https://doi.org/10.1016/j.apradiso.2023.110940. 
  26. M. Ozcan, C. Kaya, F. Kaya, Cosmic radiation shielding property of boron reinforced continuous fiber nanocomposites produced by electrospinning, Discover Nano 18 (2023) 152, https://doi.org/10.1186/s11671-023-03940-3. 
  27. Y. Kobayashi, M. Katayama, M. Kato, S. Kuramochi, Effect of microstructure on the thermal expansion coefficient of sintered cordierite prepared from sol mixtures, J. Am. Ceram. Soc. 96 (2013) 1863-1868, https://doi.org/10.1111/jace.12195. 
  28. F.C. Oliveira, V. Livramento, F. Delmas, Novel mullite-based ceramics manufactured from inorganic wastes, J. Mater. Process. Technol. 196 (2008) 101-108, https://doi.org/10.1016/j.jmatprotec.2007.05.011. 
  29. D. Kuscer, I. Bantan, M. Hrovat, B. Malic, The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes, J. Eur. Ceram. Soc. 37 (2017) 739-746, https://doi.org/10.1016/j.jeurceramsoc.2016.08.032. 
  30. A. Chowdhury, S. Maitra, H.S. Das, A. Sen, G.K. Samanta, P. Datta, Synthesis, properties and applications of cordierite ceramics, Part 2 56 (2007) 98-102. 
  31. Z. Lei, H. Gao, X. Chang, L. Zhang, X. Wen, Y. Wang, An application of green surfactant synergistically metal supported cordierite catalyst in denitration of Selective Catalytic Oxidation, J. Clean. Prod. 249 (2020) 119307, https://doi.org/10.1016/j.jclepro.2019.119307. 
  32. L.D. Zobina, G.D. Semchenko, R.A. Tarnopol'skaya, Y.G. Belik, F.Y. Kharitonov, V. P. Rudnitskaya, Synthesis of cordierite from natural materials in the presence of Al2O3-containing components, Refractories 28 (1987) 82-84, https://doi.org/10.1007/BF01386734. 
  33. V.N. Antsiferov, S.E. Porozova, S.N. Peshcherenko, Effect of the raw materials on the properties of cordierite ceramics, Refract. Ind. Ceram. 38 (1997) 388-391, https://doi.org/10.1007/BF02767900. 
  34. E.P. de Almeida, I.P. de Brito, H.C. Ferreira, H.d.L. Lira, L.N. de Lima Santana, G. de Araujo Neves, Cordierite obtained from compositions containing kaolin waste, talc and magnesium oxide, Ceram. Int. 44 (2018) 1719-1725, https://doi.org/10.1016/j.ceramint.2017.10.102. 
  35. H. Hajjou, L. Saadi, M. Waqif, Synthesis of cordierite using industrial waste fly ash, Arabian J. Geosci. 10 (2017) 1-9, https://doi.org/10.1007/s12517-017-3156-0. 
  36. R.M. Khattab, H.H. Abo-Almaged, N.A. Ajiba, H.A. Badr, A.A. Gaber, M.A. Taha, H. Sadek, Sintering, physicomechanical, thermal expansion and microstructure properties of cordierite ceramics based on utilizing silica fume waste, Mater. Chem. Phys. 270 (2021) 124829, https://doi.org/10.1016/j.matchemphys.2021.124829. 
  37. S. Wang, H. Wang, Z. Chen, R. Ji, L. Liu, X. Wang, Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals, Ceram. Int. 45 (2019) 18306-18314, https://doi.org/10.1016/j.ceramint.2019.06.043. 
  38. M.I. Sayyed, M.A. Abdo, H.E. Ali, M.S. Sadeq, Effect of Y2O3 on the structural, optical and radiation shielding properties of transparent Na-rich borate glass with diluted and fixed Fe2O3, Ceram. Int. 48 (2022) 24310-24318, https://doi.org/10.1016/j.ceramint.2022.04.226. 
  39. C. Avcioglu, M.F. Bekheet, R. Artir, Radiation shielding and mechanical properties of mullite-zirconia composites fabricated from investment-casting shell waste, J. Mater. Res. Technol. 24 (2023) 5883-5895, https://doi.org/10.1016/j.jmrt.2023.04.190. 
  40. M. Bozkurt, N. Sahin, Y. Karabul, M. Kilic, Z.G. Ozdemir, Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging, Prog. Nucl. Energy 143 (2022) 104058, https://doi.org/10.1016/j. pnucene.2021.104058. 
  41. N. Sahin, M. Bozkurt, Y. Karabul, M. Kilic, Z.G. Ozdemir, Low cost radiation shielding material for low energy radiation applications: epoxy/Yahyali Stone composites, Prog. Nucl. Energy 135 (2021) 103703, https://doi.org/10.1016/j.pnucene.2021.103703. 
  42. E. Beyazay, Y. Karabul, S.E. Korkut, M. Kilic, Z.G. Ozdemir, Multifunctional PCz/BaO nanocomposites: ionizing radiation shielding ability and enhanced electric conductivity, Prog. Nucl. Energy 155 (2023) 104521, https://doi.org/10.1016/j.pnucene.2022.104521. 
  43. F.C. Hila, A. Asuncion-Astronomo, C.A.M. Dingle, J.F.M. Jecong, A.M.V. Javier-Hila, M.B.Z. Gili, C.V. Balderas, G.E.P. Lopez, N.R.D. Guillermo, A.V. Amorsolo, EpiXS: a Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8), Radiat. Phys. Chem. 182 (2021) 109331, https://doi.org/10.1016/j.radphyschem.2020.109331. 
  44. E. S, akar, O.F. Ozpolat, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020) 108496, https://doi.org/10.1016/j.radphyschem.2019.108496. 
  45. S. Zhang, S. Tie, F. Zhang, Cristobalite formation from the thermal treatment of amorphous silica fume recovered from the metallurgical silicon industry, Micro & Nano Lett. 13 (2018) 1465-1468, https://doi.org/10.1049/mnl.2018.5167. 
  46. C. Hu, W. Xiang, P. Chen, Q. Li, R. Xiang, L. Zhou, Influence of Y2O3 on densification, flexural strength and heat shock resistance of cordierite-based composite ceramics, Ceram. Int. 48 (2022) 74-81, https://doi.org/10.1016/j.ceramint.2021.09.082. 
  47. H. Ohsato, J.-S. Kim, C.-I. Cheon, I. Kagomiya, Millimeter-wave dielectrics of indialite/cordierite glass ceramics: estimating Si/Al ordering by volume and covalency of Si/Al octahedron, J. Ceram. Soc. Japan 121 (2013) 649-654, https://doi.org/10.2109/jcersj2.121.649. 
  48. J. Zhou, Z. Xia, M. Chen, M.S. Molokeev, Q. Liu, New insight into phase formation of MxMg2Al(4+x)Si(5-x)O18:Eu2+ solid solution phosphors and its luminescence properties, Sci. Rep. 5 (2015) 12149, https://doi.org/10.1038/srep12149. 
  49. D. Wei, H.J. Seo, Determination of phase-formation of (Mg 1-x Mn x) 2 Al 4 Si 5 O 18 (x = 0-1) cordierite solid-solutions via crystallographic sites and luminescence dynamics of Mn 2+ centers, J. Mater. Chem. C 8 (2020) 7899-7907, https://doi.org/10.1039/D0TC01143F. 
  50. M. Caglar, Y. Karabul, M. Kilic, Z.G. Ozdemir, O. Icelli, Na2Si3O7/Ag micro and nano-structured glassy composites: the experimental and MCNP simulation surveys of their radiation shielding performances, Prog. Nucl. Energy 139 (2021) 103855, https://doi.org/10.1016/j.pnucene.2021.103855. 
  51. C. Avcioglu, R. Artir, Utilization of investment casting shell waste in the production of cordierite-mullite-zircon composites for radiation shielding: the influence of La2O3 additive, Ceram. Int. 50 (2024) 4581-4588, https://doi.org/10.1016/j.ceramint.2023.11.199. 
  52. S. Avcioglu, M. Buldu, F. Kaya, C. Kaya, Synthesis of nuclear-grade nano-sized boron carbide powders and its application in LDPE matrix composites for neutron shielding, Compos. Mater. Manuf. Prop. Appl. (2021) 543-579, https://doi.org/10.1016/B978-0-12-820512-9.00019-8. 
  53. S. Avcioglu, M. Buldu, F. Kaya, C.B. ustundag, E. Kam, Y.Z. Menceloglu, H. Y. Kaptan, C. Kaya, Processing and properties of boron carbide (B4C) reinforced LDPE composites for radiation shielding, Ceram. Int. 46 (2020) 343-352, https://doi.org/10.1016/j.ceramint.2019.08.268. 
  54. Z. Lei, H. Gao, X. Chang, L. Zhang, X. Wen, Y. Wang, An application of green surfactant synergistically metal supported cordierite catalyst in denitration of Selective Catalytic Oxidation, J. Clean. Prod. 249 (2020) 119307, https://doi.org/10.1016/j.jclepro.2019.119307. 
  55. M. Alwaeli, Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes, J. Clean. Prod. 166 (2017) 157-162, https://doi.org/10.1016/j.jclepro.2017.07.203. 
  56. N. Saca, L. Radu, V. Fugaru, M. Gheorghe, I. Petre, Composite materials with primary lead slag content: application in gamma radiation shielding and waste encapsulation fields, J. Clean. Prod. 179 (2018) 255-265, https://doi.org/10.1016/j.jclepro.2018.01.045. 
  57. T. Demirbay, M. Caglar, Y. Karabul, M. Kilic, O. Icelli, Z. Guven Ozdemir, Availability of water glass/Bi 2 O 3 composites in dielectric and gamma-ray screening applications, Radiat. Eff. Defect Solid 174 (2019) 419-434, https://doi.org/10.1080/10420150.2019.1596109. 
  58. M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, A. A. Thabet, Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials, J. Clean. Prod. 176 (2018) 276-287, https://doi.org/10.1016/j.jclepro.2017.12.100. 
  59. M. Ozcan, S. Avcioglu, C. Kaya, F. Kaya, Boron carbide reinforced electrospun nanocomposite fiber mats for radiation shielding, Polym. Compos. (2023), https://doi.org/10.1002/pc.27387pc.27387. 
  60. S. Avcioglu, LDPE matrix composites reinforced with dysprosium-boron containing compounds for radiation shielding applications, J. Alloys Compd. 927 (2022) 166900, https://doi.org/10.1016/j.jallcom.2022.166900. 
  61. E. Ilik, E. Kavaz, G. Kilic, S.A. Issa, H.M. Zakaly, H.O. Tekin, A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties, Ceram. Int. 48 (2022) 6780-6791, https://doi.org/10.1016/j.ceramint.2021.11.229. 
  62. O.I. Sallam, A.M. Madbouly, N.L. Moussa, A. Abdel-Galil, Impact of radiation on CoO-doped borate glass: lead-free radiation shielding, Appl. Phys. A 128 (2022) 1-16, https://doi.org/10.1007/s00339-021-05190-5.