과제정보
This work is supported by the Graduate Research Innovation Project of Hunan Province (No. CX20230963) and the National Natural Science Foundation of China (No. U2267207).
참고문헌
- G. Locatelli, C. Bingham, M. Mancini, Small modular reactors: a comprehensive overview of their economics and strategic aspects, Prog. Nucl. Energy 73 (2014) 75-85, https://doi.org/10.1016/j.pnucene.2014.01.010.
- A. Halimi, K. Shirvan, Impact of core power density on economics of a small integral PWR, Nucl. Eng. Des. 385 (2021) 111488, https://doi.org/10.1016/j.nucengdes.2021.111488.
- J.H. Kim, M.M. Song, S.A. Alameri, Emerging areas of nuclear power applications, Nucl. Eng. Des. 354 (2019) 110183, https://doi.org/10.1016/j.nucengdes.2019.110183.
- M.D. Carelli, P. Garrone, G. Locatelli, M. Mancini, C. Mycoff, P. Trucco, M. E. Ricotti, Economic features of integral, modular, small-to-medium size reactors, Prog. Nucl. Energy 52 (4) (2010) 403-414, https://doi.org/10.1016/j.pnucene.2009.09.003.
- O. Bukharin, Russia's nuclear icebreaker fleet, Sci. Global Secur. 14 (1) (2006) 25-31, https://doi.org/10.1080/08929880600620559.
- M.K. Rowinski, T.J. White, J.Y. Zhao, Small and Medium sized Reactors (SMR): a review of technology, Renewable Sustainable Energy Rev. 44 (2015) 643-656, https://doi.org/10.1016/j.rser.2015.01.006.
- V.V. Petrunin, Yu P. Fadeev, A.N. Pakhomov, K.B. Veshnyakov, V.I. Polunichev, I. E. Shamanin, Conceptual design of small NPP with RITM-200 reactor, At. Energy 125 (2019) 365-369, https://doi.org/10.1007/s10512-019-00495-4.
- M.V. Ramana, L.B. Hopkins, A. Glaser, Licensing small modular reactors, Energy 61 (2013) 555-564, https://doi.org/10.1016/j.energy.2013.09.010.
- U. Rohde, I. Elkin b, V. Kalinenko, Analysis of a boron dilution accident for WWER-440 combining the use of the codes DYN3D and SiTap, Nucl. Eng. Des. 170 (1-3) (1997) 95-99, https://doi.org/10.1016/S0029-5493(97)00016-2.
- B.H. Jo, C.J. Hah, Investigation on long-term daily load follow operation capability of soluble boron-free SMR, Ann. Nucl. Energy 149 (2020) 107764, https://doi.org/10.1016/j.anucene.2020.107764.
- Y. Alzaben, V.H. Sanchez-Espinoza, R. Stieglitz, Core neutronics and safety characteristics of a boron-free core for Small Modular Reactors, Ann. Nucl. Energy 132 (2019) 70-81, https://doi.org/10.1016/j.anucene.2019.04.017.
- L.V.D. Merwe, C.J. Hah, Reactivity balance for a soluble boron-free small modular reactor, Nucl. Eng. Technol. 50 (5) (2018) 648-653, https://doi.org/10.1016/j.net.2018.01.019.
- Chungchan Lee, Dae-Hyun Hwang, Sung-Quun Zee, Moon Hee Chang, Nuclear and thermal hydraulic design characteristics of the SMART core, in: International Conference on Global Environment and Advanced Nuclear Power Plants, 2003. Kyoto, Japan, https://www.osti.gov/etdeweb/biblio/20635506.
- J. Choe, Y. Zheng, D. Lee, H.C. Shin, Boron-free small modular pressurized water reactor design with new burnable absorber, Int. J. Energy Res. 40 (15) (2016) 2128-2135, https://doi.org/10.1002/er.3590.
- D.T. Ingersoll, M.D. Carelli, Handbook of small modular nuclear reactor, in: A. Worrall (Ed.), Core and Fuel Technologies in Integral Pressurized Water Reactors (iPWRs), 2021, pp. 69-93, https://doi.org/10.1016/B978-0-12-823916-2.09991-4. United Kingdom.
- J. Mart, A. Klein, A. Soldatov, Feasibility study of a soluble boron-free small modular integral pressurized water reactor, Nucl. Technol. 18 (1) (2014) 8-19, https://doi.org/10.13182/NT13-135.
- J. Jang, J. Choe, S. Choi, M. Lemaire, D. Lee, H.C. Shin, Conceptual design of long-cycle boron-free small modular pressurized water reactor with control rod operation, Int. J. Energy Res. 44 (8) (2020) 6463-6482, https://doi.org/10.1002/er.5381.
- S.B. Alam, D. Kumar, B. Almutairi, P.K. Bhowmik, C. Goodwin, G.T. Parks, Small modular reactor core design for civil marine propulsion using micro-heterogeneous duplex fuel. Part I: assembly-level analysis, Nucl. Eng. Des. 346 (2019) 157-175, https://doi.org/10.1016/j.nucengdes.2019.03.005.
- A.C. Diakov, A.M. Dmitriev, J. Kang, A.M. Shuvayev, F.N.V. Hippel, Feasibility of converting Russian icebreaker reactors from HEU to LEU fuel, Sci. Global Secur. 14 (1) (2006) 33-48, https://doi.org/10.1080/08929880600620575.
- Khalid Al-Nabhani, Applications of nuclear and radioisotope technology, in: IAEA (Ed.), Treaty on the Non-proliferation of Nuclear Weapons-NPT, United State, 2021, pp. 439-445, https://doi.org/10.1016/B978-0-12-821319-3.00082-8.
- K.K. Seog, Specification for the VERA Depletion Benchmark Suite, Oak Ridge National Lab, 2015, p. 7, https://doi.org/10.2172/1256820. ORNL/TM-2016/53NT0304000.
- P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
- D.S. Li, Characteristic analyses of "177 core" of HPR1000, Nucl. Power Eng. 43 (3) (2022) 28-32, https://doi.org/10.13832/j.jnpe.2022.03.0028.
- V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods, J. Nucl. Mater. 281 (1) (2000) 84-89, https://doi.org/10.1016/S0022-3115(00)00129-X.
- M.M. Nasseri, Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy 114 (2018) 603-606, https://doi.org/10.1016/j.anucene.2017.12.060.
- Y. Liu, M.C. Li, R.Y. Yu, P. Xiao, L. Lou, Burnup analysis of candidate materials for accident tolerant fuel control rod, Mod. Appl. Phys. 12 (1) (2021) 10211, https://doi.org/10.12061/j.issn.2095-6223.2021.01021. -10211.
- C. Liu, F.Y. Zhao, D. Liu, B. Yang, J.B. Li, X.L. Zhang, B. Ye, H.Y. Lv, Research on non-uniform control rod for PWR, Prog. Nucl. Energy 133 (2021) 103527, https://doi.org/10.1016/j.pnucene.2020.103527.