• Title/Summary/Keyword: Cordierite-mullite composite

Search Result 6, Processing Time 0.018 seconds

A Synthesis of Mullite-Cordierite Composite Powders by Solution-Polymerization Route Based on Polyvinyl Alcohol (PVA를 이용한 Solution-Polymerization 합성법에 의한 Mullite-Cordierite 복합분말의 합성)

  • Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.663-669
    • /
    • 2004
  • Mullite and cordierite, which were stable oxides having excellent thermal and chemical characteristics, were widely used as an engineering and electronic materials. However, thermal shock resistance of the mullite was detriorated, and strength of the cordierite was also reduced at high temperatures. The mullite-cordierite composite powders were synthesized for solving these problems in this study. The mullite-cordierite composite powders were manufactured by the solution-polymerization method using mixtures of fused silica, aluminium nitrate, magnesium nitrate, and PVA. Crystallinity, phase formation, density, and surface area of the synthesis powders were characteristics. Fine mullite-cordlerite composite powders were successfully synthesized at 1300$^{\circ}C$ and their surface areas were about 20㎡/g after planetary milling for 1h. With increasing the milling time, surface area increased to 23 ㎡/g for 4h ana 24㎡/g for 8h.

Waste to shield: Tailoring cordierite/mullite/zircon composites for radiation protection through controlled sintering and Y2O3 addition

  • Celal Avcioglu;Recep Artir
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2767-2774
    • /
    • 2024
  • In this study, investment casting shell waste successfully utilized to produce cordierite/mullite/zircon composites. Green pellets, consisting of investment casting shell waste, alumina, and magnesia, were prepared and sintered at temperatures between 1250 and 1350 ℃. The influence of the sintering temperature on the crystalline phase composition, densification behavior, flexural strength, microstructure, and radiation shielding properties of the cordierite/mullite/zircon composites is investigated. Phase analysis showed that characteristic cordierite peaks appear at 1250 ℃, but the complete conversation of silica from investment casting shell waste into cordierite requires a sintering temperature of at least 1300 ℃. Notably, the cordierite/mullite/zircon composite sintered at 1350 ℃ exhibited a sixfold increase in flexural strength compared to the ceramic composite directly fabricated from investment casting shell waste at the same sintering temperature. Furthermore, the effect of Y2O3 addition on composites' radiation shielding properties is investigated. The results show that the Y2O3 addition improves densification behavior, enhancing the shielding capabilities of the composites against fast neutron and gamma radiation. Our findings suggest that the developed ceramic composites show significant potential for gamma-ray and neutron shielding applications.

Characteristic of Sintering of Mullite-Cordierite Composite by a Solution-Polymerization Route Employing PVA (PVA를 이용한 Solution-Polymerization 합성법에 의하여 제조된 Mullite-Cordierite 복합체의 소결특성)

  • Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.155-164
    • /
    • 2005
  • The characteristics of sintering for Mullite-Cordierite (MC) composites and the effect of $TiO_2$ addition were studied. The MC composites were manufactured by a solution-polymerization method using PVA as a polymer carrier, and $TiO_2$ was used as a sintering agent. They were calcined at $1300^{\circ}C$, planetary milled for 4 h and sintered at $1450^{\circ}C$. As cordierite content increased, relative density of materials was increased up to $98\%$ and sinterability was improved. In case of $50\;wt\%$ mullite/$5\;wt\%$ cordierite composition sintered for 16 h, the flexural strength and thermal expansion coefficient were 190 MPa and $3.07{\times}0^{-6}/^{\circ}C$, respectively. However, mechanical properties were decreased with the cordierite contents higher than $50\;wt\%$ because of the excess liquid-phase amount. As the addition of $TiO_2$ is increased, columnar crystal of mullite and liquid-phase contents were increased. In particular, the flexural strength and thermal expansion coefficient decreased in case of $5\;wt\%\;TiO_2$ addition.

Effect of SiC on the Mullite-Cordierite Composite Properties

  • Motaman, A.;Amin, S.A.;Jahangir, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1067-1070
    • /
    • 2006
  • Experimental samples were produced with mullite and cordierite powders with SiC. Effects of temperature, atmosphere and additive on the composite properties were investigated by XRD, STA and PSA methods. Results show that samples containing calcinate cordierite and calcinate mullite with SiC baked in air atmosphere have not suitable properties at the temperature range of $1380-1450^{\circ}C$ due to SiC intensive oxidation, while argon atmosphere decrease SiC oxidation. Using $Bi_2O_3$ as the additive, cordierite phase formation and prevention from SiC oxidation at low temperatures were achieved, leading to the improvement of physical and mechanical properties

  • PDF

Phase Evolution, Thermal Expansion, and Microwave Dielectric Properties of Cordierite-Al2O3 Composite

  • Kim, Shin;Song, Eun-Doe;Hwang, Hae-Jin;Lee, Joo-sung;Yoon, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.337-341
    • /
    • 2021
  • Phase evolution, thermal and microwave dielectric properties of cordierite-Al2O3 composite were investigated. As the content of Al2O3 increased, mullite, sapphirine, and spinel were formed as secondary phases, implying that cordierite may be decomposed by the reaction with Al2O3. All sintered specimens exhibited dense microstructures. The densification occurred through liquid phase sintering. As the content of Al2O3 increased, the thermal expansion coefficient and the dielectric constant increased, whereas the quality factor decreased. The thermal expansion coefficient, the dielectric constant, and the quality factor of the 90 wt% cordierite 10 wt% Al2O3 composite sintered at 1,425℃ were 2.9×10-6 K-1, 5.1, and 34,844 GHz, respectively.