• Title/Summary/Keyword: $Y_2O_3$ additive

Search Result 528, Processing Time 0.032 seconds

A study on the electrical characteristic of PZT ceramics with additive. (첨가제에 의한 PZT세라믹의 전기적 특성에 관한 연구)

  • 김현철;김진섭;김혁동;배선기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.236-239
    • /
    • 1999
  • This paper is the study for electrical characteristic of PZT ceramics with Sb$_2$O$_3$, CoO additive. Effect of Sb$_2$O$_3$, CoO additive ranged from 0.0 wt% to 1.2wt% on the electrical characteristic of the PZT ceramics have been investigated. In the case of Sb$_2$O$_3$ 0.6wt%, the maximum vague of mechanical quality factor(Qm) was obtained 124.11 at l15$0^{\circ}C$. And, additive CoO 1.2wt% was obtained 184.12 at l15$0^{\circ}C$. The electromechanical coupling factor(kp) was increased by increasing the amount of Sb$_2$O$_3$, CoO additive. The maximum value of electromechanical coupling factor(kp) was obtained 58.35 with Sb$_2$O$_3$1.2wt% additive at l15$0^{\circ}C$. Dopped with additive CoO 0.9wt%, electromechanical coupling factor(kp) was obtained 47.84 at 115$0^{\circ}C$.

  • PDF

Cracked-Healing and Bending Strength of Si3N4 Ceramics (Si3N4 세라믹스의 균열 치유와 굽힘 강도 특성)

  • Nam, Ki-Woo;Park, Seung-Won;Do, Jae-Youn;Ahn, Seok-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.957-962
    • /
    • 2008
  • Crack-healing behavior of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and amount of additive $SiO_2$ colloidal. Results showed that optimum amount of additive $SiO_2$ colloidal and coating of $SiO_2$ colloidal on crack could significantly increase the bending strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the amount of additive $SiO_2$ colloidal. Crack healing strength was far the better cracked specimen with $SiO_2$ colloidal coating on crack surface. After heat treatment at the temperature 1,273 K in air, the crack morphology almost entirely disappeared by scanning prob microscope. At optimum healing temperature 1,273 K, the bending strength with additive $SiO_2$ colloidal 0.0 wt.% without $SiO_2$ colloidal coating recovered to the value of the smooth specimens at room temperature for the investigated crack sizes $100\;{\mu}m$. But that with $SiO_2$ colloidal coating increase up to 140 %. The amount of optimum additive $SiO_2$ colloidal was 1.3 wt.% and crack healed bending strength with $SiO_2$ colloidal coating increase up to 160 % to smooth specimen of additive $SiO_2$ colloidal 0.0 wt.%. Crack closure and rebonding of the crack due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in $Si_3N_4$ composite ceramics.

The Effects of $Sb_2O_3$ on the Radiation Properties of a Far-Infrared in Semiconducting PTC Thermistor (반도성 PTC 서미스터의 원적외선 방사특성에 미치는 $Sb_2O_3$의 영향)

  • Cho, H.S.;Song, M.J.;Shin, Y.D.;Jang, S.H.;Park, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.278-281
    • /
    • 1991
  • 1) The specimen with 0.175[mol%] of additive $Sb_2O_3$ was minute and didn't appear porosity. The relation between the ratio of resistivity at $160^{\circ}C$ to that at $121^{\circ}C$ of the specimen with 0.175[mol%] of additive $Sb_2O_3$ was $3{\times}10^4$ and it's great value from among specimens. 2) The curie temperature of the specimen with 0.2 [mol%] of additive $Sb_2O_3$ was $140^{\circ}C$ AND it's great value from among specimens and those of other were $121^{\circ}C$ in all therefore, the specimen with above 0.2[mol%] of additive $Sb_2O_3$ is not match for PTCR 3) The variation of radiation properties of the specimen with 0.2[mol%] of additive $Sb_2O_3$ was very steep in the range of far-infrared $5{\sim}10[{\mu}m]$ but radiation percentage was very high of 0.92 in the range of $10[{\mu}m]$.

  • PDF

A Study on Installation of Treatment Equipment of Malodorous Substances using the $O_3$ (오존($O_3$)을 이용한 악취물질 처리시설의 적용사례 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.70-74
    • /
    • 2000
  • The technology of malodorous substances treatment was classified physical separation and chemical destruction. This study was carried out to investigate the characteristics of malodorous substances treatment with the change of operating conditions from the ozone generator. The major results of this study were as follows : Removal efficiency by additive ozone rate was measured $NH_3$:95%(ozone additive rate : 2), $H_2S$ : 97%(ozone additive rate:4), $CH_3SH$ : 96%(ozone additive rate : 3), $(CH_3)_2S_2$ : 97%(ozone additive rate:5), $(CH_3)_3N$ : 95%(ozone additive rate : 1), $CH_3CHO$ : 95%(ozone additive rate : 2), $C_6H_5CHCH_2$ : 95%(ozone additive rate : 2).

  • PDF

A Study on the Microstructure and Electrical Properties of ZnO:Pr Varistor with $Y_2O_3$Additive ($Y_2O_3$ 첨가에 따른 ZnO:Pr 바리스터의 미세구조 및 전기적 특성에 관한 연구)

  • 남춘우;정순철;이외천
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.48-56
    • /
    • 1998
  • Pr\ulcornerO\ulcorner-based ZnO varistors were fabricated in the range of $Y_2$O$_3$additive content from 0.5 to 4.0mol%, and its microstructure and electrical properties were investigated. Yttrium was distributed nearly in the grain boundaries and the cluster phase formed at nodal point but more in cluster phase. The average grain size was decreased markedly from 34.9 to 8.6${\mu}{\textrm}{m}$ with increasing $Y_2$O$_3$additive content. It is believed that the decrease of grain size is attributed to the formation of cluster phase and the weakening of driving force for liquid sintering. As a result, $Y_2$O$_3$was acted as the inhibitor of the grain growth. With increasing $Y_2$O$_3$additive content, the varistor voltage, the activation energy, and the nonlinear exponent increased whereas the leakage current decreased, especially 4.0mol% $Y_2$O$_3$-added varistor exhibited very good I-V characteristics; nonlinear exponent 87.42 and leakage current 46.77nA. On the other hand, as $Y_2$O$_3$additive content increases, the varistor showed tendency of the salient decrease for donor concentration and the increase for barrier height. Conclusively, it is estimated that ZnO:Pr varistor compositions added more than 2.0mol% $Y_2$O$_3$are to be used to fabricate useful varistors.

  • PDF

Fabrication and Strength Properties of LPS-SiC based materials

  • Lee, Sang-Pill;Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.25-28
    • /
    • 2006
  • This paper dealt with the LPS process for the development of high performance SiC materials, based on the detailed analysis of their microstructure and mechanical properties. The submicron SiC powder was used for the fabrication of LPS-SiC materials. A mixture of $Al_2O_3$ and $Y_2O_3$ particles was also used as a sintering additive in the LPS process. LPS-SiC materials were fabricated at different temperatures, using various additive composition ratio ($Al_2O_3/Y_2O_3$). The total amount of additive materials ($Al_2O_3+Y_2O_3$) was fixed as 10 wt%. The characterization Of LPS-SiC materials was investigated by means of SEM, XRD and three point bending test. The LPS-SiC material represented a relative density of about 98 % and a flexural strength of about 800MPa, when it was fabricated at the temperature of $1820^{\circ}C$ and the additive compositional ratio of 1.5.

  • PDF

Bending Strength of Crack Healed $Si_3N_4/SiC$ Composite Ceramics by $SiO_2$ Colloidal

  • Park, Sung-Won;Kim, Mi-Kyung;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.166-168
    • /
    • 2006
  • $Si_3N_4/SiC$ composite ceramics was sintered in order to investigate their bending strength behavior after crack healing. $Y_2O_$ and $TiO_2$ power was added as sintering additives to enhance it's sintering property. A three-point bending specimen was cut out from sintered plates. About $100\;{\mu}m$ semi-circular surface cracks were made on the center of the tension surface of the three-point bending specimen using Vickers indenter. After the crack-healing processing from $500^{\circ}C$ to $1300^{\circ}C$, for 1 h, in air, the bending strength behavior of these crack-healed specimen coated with $SiO_2$ colloidal were determined systematically at room temperature. $Si_3N_4/SiC$ ceramics using additive powder ($Y_2O_3+TiO_2$) was superior to that of additive powder $Y_2O_3$. The additive powder $TiO_2$ exerted influence at growth of $Si_3N_4$. The optimum crack healing conditions coated $SiO_2$ colloidal were $1000^{\circ}C$ at $Si_3N_4/SiC$ using additive powder ($Y_2O_3+TiO_2$), and $1300^{\circ}C$ at $Si_3N_4/SiC$ using additive powder $Y_2O_3$.

  • PDF

The Characteristics of Acoustic Emission of $Al_2O_3$ Ceramics by an Amount of Additive $Y_2O_3$ (소결조제 $Y_2O_3$ 함유량에 따른 $Al_2O_3$ 세라믹스의 음향방출 특성)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.71-75
    • /
    • 2008
  • This paper illustrates haw $Y_2O_3$ contributes to crack-healing strengths as a function of crack-healing temperature and the additive amount. In investigating mechanical properties, the indentation fracture method is very simple and useful, but careful attention must be paid to the statistical data processing because data may be scattered excessively, especially for brittle materials. To estimate accurate AE signal properties we applied the useful time-frequency method with a discrete wavelet analysis algorithm. In experiments, three kinds of specimens were prepared. After the specimens were indented by a Vickers indentor, they were heat-treated and crack-healed to evaluate bending strength and the AE signal. With higher amounts of the additive powder, as 1, 3, or 5% wt. of $Y_2O_3$, the concentrative tendency of dominant frequency trended toward lower frequency groups. The $Al_2O_3$ ceramic with 3% wt. of $Y_2O_3$ was judged most suitable because it demonstrated superior crack-healing ability and relative concentration on the highest frequency group.

Effects of Additives on the Properties of $YBa_2Cu_3O_x$

  • Soh, Dea-Wha;Cho, Yong-Joon;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • The superconducting properties of $YBa_2Cu_3O_x$ with different content impurities of PbO and $BaPbO_3$ were studied. When the PbO was used as an additive in $YBa_2Cu_3O_x$, although the melting point could be reduced, the superconductivity became poor. From the XRD pattern of the sintered mixture of $YBa_2Cu_3O_x$ and PbO it was known that there is a reaction between $YBa_2Cu_3O_x$ and PbO, and the product is $BaPbO_3$. In the process of the reaction the superconducting phase of $YBa_2Cu_3O_x$ was decreased and $BaPbO_3$ would be the main phase in the sample. Therefore, $BaPbO_3$ was chosen as the impurity additive for the comparative study. The single phase of $BaPbO_3$ was synthesized by the simple way from both mixtures of $BaCO_3$ and PbO, $BaCO_3$ and $PbO_2$. Different contents of $BaPbO_3$ (10%, 20%, 30%) were added in the $YBa_2Cu_3O_x$. By the Phase analysis in the XRD patterns it was proved that there was no reaction between $YBa_2Cu_3O_x$ and $BaPbO_3$. When $BaPbO_3$ was used as impurity in $YBa_2Cu_3O_x$ the superconductivity was much better than PbO as an impurity additive in $YBa_2Cu_3O_x$.

  • PDF

Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al2O3/SiC Composite Ceramics (알루미나 탄화규소 복합세라믹스 균열치유재의 강도와 탄성파 특성)

  • Kim, Hae-Suk;Kim, Mi-Gyeong;Kim, Jin-Uk;An, Seok-Hwan;Nam, Gi-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.425-431
    • /
    • 2007
  • [ $Al_2O_3/SiC$ ]composite ceramics were sintered to evaluate the bending strength and elastic wave characteristics. The three-point bending test was carried out under room temperature. The elastic wave was detected by fracture wave detector. The crack healing behavior was investigated from 1373 K to 1723 K. The bending strength of $Al_2O_3/SiC$ composite by nanocomposite is higher than that of $Al_2O_3$ monolithic. Crack-healing behavior depended on an amount of additive powder $Y_2O_3$. In $Al_2O_3/SiC$ composite ceramics with 3 wt. % $Y_2O_3$ for additive powder, the bending strength at 1573 K is about 100% increase than that of the smooth specimens. From the result of wavelet analysis of elastic wave signal, the smooth specimen and heat treated specimen of $Al_2O_3$ monolithic and $Al_2O_3/SiC$ composite ceramics showed characteristics of frequency about 58 kHz. The strength of $Al_2O_3/SiC$ composite ceramics was a little higher than those of $Al_2O_3$ monolithic. The dominant frequencies were high with increasing of $Y_2O_3$ for additive powder. The dominant frequencies had direct connection with the bending strength.