DOI QR코드

DOI QR Code

Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles

  • Gang Yao (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Hong-Yu Chen (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Lai-Ma Luo (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Xiang Zan (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Yu-Cheng Wu (School of Materials Science and Engineering, Hefei University of Technology)
  • Received : 2023.07.02
  • Accepted : 2024.01.14
  • Published : 2024.06.25

Abstract

Tungsten is the most promising plasma facing material for fusion reactors. Rolled W-Y2(Zr)O3 bulk material has been successfully produced in this study for future fusion engineering applications. The introduction of Zr is conducive to the refinement of the second phase particles. Nano-sized Y-Zr-O particles are observed in the powder and bulk samples. Related results show that the Y-Zr-O particle dispersion distribution improves the heat load resistance of W-Y2(Zr)O3 composite material. For four-point bend experiments in the same sampling direction, the DBTT of W-Y2(Zr)O3 composite materials is lower compared to the pure tungsten. For the same material, the DBTT of the material was selected for testing along the RD direction is lower compared to the material was selected for testing along the TD direction. Findings of this study provide suggestions for the subsequent industrial preparation of nanoscale particle-doped tungsten materials.

Keywords

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2019YFE03120002, 2022YFE03140001), the Anhui Provincial Natural Science Foundation (2308085QE154, 2208085ME122), the Fundamental Research Funds for the Central Universities (JZ2023HGQB0164), the Postdoctoral Fellowship Program of CPSF (GZC20230656).

References

  1. E. Lassner, W.D. Schubert, Tungsten, Plenum Publishers, New York, USA, 1999. 
  2. A.A.F. Tavassoli, Present limits and improvements of structural materials for fusion reactors - a review, J. Nucl. Mater. 302 (2002) 73-88. 
  3. X. Zheng, R. Bai, D. Wang, X. Cai, F. Wang, M.H. Xia, J. Yu, Research development of refractory metal materials used in the field of aerospace, Rare Met. Mater. Eng. 40 (2011) 1871-1875. 
  4. E. Antolini, E.R. Gonzalez, Tungsten-based materials for fuel cell applications, Appl. Catal. B Environ. 96 (2010) 245-266. 
  5. G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, D.G. Whyte, Plasma-material interactions in current tokamaks and their implications for next step fusion reactors, Nucl. Fusion 41 (2001) 1967-2137. 
  6. Q.P. Yuan, B.J. Xiao, B.G. Penaflor, D.A. Piglowski, L.Z. Liu, R.D. Johnson, M. L. Walker, D.A. Humphreys, New achievements in the EAST plasma control system, Fusion, Eng. Des. 85 (2010) 474-477. 
  7. J.M. Chen, J.H. Wu, X. Liu, P.H. Wang, Z.H. Wang, Z.N. Li, X.S. Wang, P.C. Zhang, N.M. Zhang, H.Y. Fu, D.H. Liu, Materials development for ITER shielding and test blanket in China, J. Nucl. Mater. 417 (2011) 81-84. 
  8. M.M. Seyyedhabashy, M.A. Tafreshi, B.S. bidabadi, S. Shafiei, A. Nasiri, Damage studies on irradiated tungsten by helium ions in a plasma focus device, Nucl. Eng. Technol. 52 (2020) 827-834. 
  9. J.G. Li, G.N. Luo, R. Ding, D.M. Yao, J.L. Chen, L. Cao, J.S. Hu, Q. Li, The EAST team, Plasma facing components for the experimental advanced superconducting Tokamak and CFETR, Phys. Scr. T159 (2014) 014001. 
  10. H.Y. Chen, Q. Xu, J.H. Wang, P. Li, J.L. Yuan, B.H. Lyu, J.H. Wang, K. Tokunaga, G. Yao, L.M. Luo, Y.C. Wu, Effect of surface quality on hydrogen/helium irradiation behavior in tungsten, Nucl. Eng. Technol. 54 (2022) 1947-1953. 
  11. H.Y. Chen, L. Wang, F. Peng, Q. Xu, Y.X. Xiong, S.J. Zhao, K. Tokunaga, Z.G. Wu, Y. Ma, P.Q. Chen, L.M. Luo, Y.C. Wu, Hydrogen retention and affecting factors in rolled tungsten: thermal desorption spectra and molecular dynamics simulations, Int. J. Hydrogen Energy 48 (78) (2023) 30522-30531. 
  12. L.M. Luo, Z.H. Zhao, G. Yao, Y.C. Wu, Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices, J. Nucl. Mater. 548 (2021) 152857. 
  13. F.N. Xiao, Q. Miao, S.Z. Wei, W.P. Liang, X.M. Fan, K.M. Pan, L.J. Xu, Hydrothermal synthesis of nanoplates assembled hierarchical h-WO3 microspheres and phase evolution in preparing cubic Zr(Y)O2-doped tungsten powders, Adv. Powder Technol. 29 (2018) 2633-2643. 
  14. T. Zhang, W.Y. Du, C.Y. Zhan, M.M. Wang, H.W. Deng, Z.M. Xie, H. Li, The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy, Nucl. Eng. Technol. 54 (2022) 2801-2808. 
  15. Y.M. Wang, J. Aktta, Microstructural evolution, textural evolution and thermal stabilities of W and W-1wt% La2O3 subjected to high-pressure torsion, Materialia 2 (2018) 46-52. 
  16. X.Y. Tan, L.M. Luo, H.Y. Chen, X.Y. Zhu, X. Zan, G.N. Luo, J.L. Chen, P. Li, J. G. Cheng, D.P. Liu, Y.C. Wu, Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation, Sci. Rep. 5 (2015) 12755. 
  17. Z. Chen, M.L. Qin, J.J. Yang, L. Zhang, B.R. Jia, X.H. Qu, Effect of La2O3 addition on the synthesis of tungsten nanopowder via combustion-based method, J. Mater. Sci. Technol. 58 (2020) 24-33. 
  18. H.Y. Chen, L.M. Luo, J.B. Chen, P. Li, G.N. Luo, J.G. Cheng, Y.C. Wu, Effect of Sc2O3 particles on the microstructure and properties of tungsten alloy prepared by spark plasma sintering, J. Nucl. Mater. 462 (2015) 496-501. 
  19. M. Battabyal, R. Schaublin, P. Spatig, N. Baluc, W-2wt.%Y2O3 composite: microstructure and mechanical properties, Mat. Sci. Eng. A-Struct. 538 (2012) 53-57. 
  20. Z. Dong, N. Liu, Z.Q. Ma, C.X. Liu, Q.Y. Guo, Z.A. Alothman, Y. Yamauchi, Md S. A. Hossain, Y.C. Liu, Sci. Rep. 7 (2017) 6051. 
  21. G. Yao, X.Y. Tan, M.Q. Fu, L.M. Luo, X. Zan, Q. Xu, J.Q. Liu, X.Y. Zhu, J.G. Cheng, Y.C. Wu, Isotropic thermal conductivity in rolled large-sized W-Y2O3 bulk material prepared by powder metallurgy route and rolling deformation technology, Fusion, Eng. Des. 137 (2018) 325-330. 
  22. Z. Lei, Z.C. Huang, W. Pan, High transparency Nd: Y2O3 ceramics prepared with La2O3 and ZrO2 additives, J. Am. Ceram. Soc. 98 (2015) 824-828. 
  23. X.R. Hou, S.M. Zhou, W.J. Li, Y.K. Li, Study on the effect and mechanism of zirconia on the sinterability of yttria transparent ceramic, J. Eur. Ceram. Soc. 30 (2010) 3125-3129. 
  24. F.N. Xiao, Q. Miao, T. Barriere, G. Cheng, S.W. Zuo, L.J. Xu, A study on the effect of solution acidity on the microstructure, mechanical, and wear properties of tungsten alloys reinforced by yttria-stabilised zirconia particles, Mater. Today Commun. 27 (2021) 102223. 
  25. Z. Li, Y.B. Chen, S.Z. Wei, Y.C. Zhao, T.J. Wang, L.J. Xu, Microstructure characterization and properties of YSZ particles doped tungsten alloy prepared by liquid phase method, Mat. Sci. Eng. A-Struct. 832 (2022) 142483. 
  26. F.N. Xiao, T. Barriere, G. Cheng, Q. Miao, S.Z. Wei, S.W. Zuo, Y.P. Yang, L.J. Xu, Research on the effect of liquid-liquid doping processes on the doped powders and microstructures of W-ZrO2(Y) alloys, J. Alloys Compd. 855 (2021) 157335. 
  27. G. Federici, A. Zhitlukhin, N. Arkhipov, R. Giniyatulin, N. Klimov, I. Landman, V. Podkovyrov, V. Safronov, A. Loarte, M. Merola, Effects of ELMs and disruptions on ITER divertor armour materials, J. Nucl. Mater. 337-339 (2005) 684-690. 
  28. V.P. Budaev, YuV. Martynenko, A.V. Karpov, N.E. Belova, A.M. Zhitlukhin, N. S. Klimov, V.L. Podkovyrov, V.A. Barsuk, A.B. Putrik, A.D. Yaroshevskaya, R. N. Giniyatulin, V.M. Safronovd, L.N. Khimchenko, Tungsten recrystallization and cracking under ITER-relevant heat loads, J. Nucl. Mater. 463 (2015) 237-240. 
  29. W. J Wang, G.N. Luo, Q. Li, X.L. Wang, S.G. Qin, G.H. Liu, Four-point Bending Test of Advanced Tungsten Materials for Fusion Reactors and its DBTT Study, CMC2018, Xiamen, China, 2018. July. 
  30. N.C. Reid, L. Garrison, M. Gussev, J.P. Allain, Design and analysis of an advanced three-point bend test approach for miniature irradiated disk specimens, Fusion Sci. Technol. Fusion Sci. Technol. 77 (7-8) (2021) 1-8. 
  31. C. Yin, D. Terentyev, T. Pardoen, R. Petrov, Z.F. Tong, Ductile to brittle transition in ITER specification tungsten assessed by combined fracture toughness and bending tests analysis, Mat. Sci. Eng. A-Struct. 750 (2019) 20-30. 
  32. C. Yin, D. Terentyev, T. Zhang, S. Nogami, S. Antusch, C.C. Chang, R.H. Petrov, T. Pardoen, Ductile to brittle transition temperature of advanced tungsten alloys for nuclear fusion applications deduced by miniaturized three-point bending tests, Int. J. Refract. Met. H. 95 (2021) 105464. 
  33. Z.S. Levina, A. Srivastava, D.C. Foley, K.T. Hartwig, Fracture in annealed and severely deformed tungsten, Mat. Sci. Eng. A-Struct. 734 (2018) 244-254. 
  34. E. Gaganidze, A. Chauhan, H.C. Schneider, D. Terentyev, G. Borghmans, J. Aktaa, Fracture-mechanical properties of neutron irradiated ITER specification tungsten, J. Nucl. Mater. 547 (2021) 152761. 
  35. M. Conte, J. Aktaa, Manufacturing influences on microstructure and fracture mechanical properties of polycrystalline tungsten, Nucl. Mater. Energy 21 (2019) 100591. 
  36. R.G. Abernethy, J.S.K.-L. Gibson, A. Giannattasio, J.D. Murphy, O. Wouters, S. Bradnam, L.W. Packer, M.R. Gilbert, M. Klimenkov, M. Rieth, H.-C. Schneider, C. D. Hardie, S.G. Roberts, D.E.J. Armstrong, Effects of neutron irradiation on the brittle to ductile transition in single crystal tungsten, J. Nucl. Mater. 527 (2019) 151799. 
  37. S. Wahlberg, M.A. Yar, M.O. Abuelnaga, H.G. Salem, M. Johnsson, M. Muhammed, Fabrication of nanostructured W-Y2O3 materials by chemical methods, J. Mater. Chem. 22 (2012) 12622-12628. 
  38. K. Wang, X. Zan, M. Yu, W. Pantleon, L.M. Luo, X.Y. Zhu, P. Li, Y.C. Wu, Effects of thickness reduction on recrystallization process of warm-rolled pure tungsten plates at 1350◦C, Fusion Eng. Des. 125 (2017) 521-525. 
  39. X. Liu, Y.Y. Lian, L. Chen, Z.K. Chen, J.M. Chen, X.R. Duan, J.L. Fan, J.P. Song, Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys, J. Nucl. Mater. 463 (2015) 166-169. 
  40. USA Standard, ASTM C1161-13, 2001. 
  41. A.S. Wronski, A.C. Chilton, E.M. Capron, The ductile-brittle transition in polycrystalline molybdenum, Acta Metall. 17 (1969) 751-755. 
  42. K.J. Stout, P.J. Sullivan, P.A. McKeown, The use of 3-D topographic analysis to determine the microgeometric transfer characteristics of textured sheet surfaces through rolling, CIRP. Ann. 41 (1992) 621-624. 
  43. F. Heshmatpour, Z. Khodaiy, R.B. Aghakhanpour, Synthesis and characterization of pure tetragonal nanocrystalline sulfated 8YSZ powder by sol-gel route, Powder Technol. 224 (2012) 12-18. 
  44. F.N. Xiao, T. Barriere, G. Cheng, Q. Miao, S.Z. Wei, S.W. Zuo, Z.M. Huang, L.J. Xu, Research on preparation process for the in situ nanosized Zr(Y)O2 particles dispersion-strengthened tungsten alloy through synthesizing doped hexagonal (NH4)0.333.WO3, J. Alloys Compd. 843 (2020) 156059. 
  45. F.N. Xiao, L.J. Xu, Y.C. Zhou, K.M. Pan, J.W. Li, W. Liu, S.Z. Wei, A hybrid microstructure design strategy achieving W-ZrO2(Y) alloy with high compressive strength and critical failure strain, J. Alloys Compd. 708 (2017) 202-212. 
  46. Q. Wei, L.J. Kecskes, Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten, Mater. Sci. Eng. A-Struct. 491 (2008) 62-69. 
  47. Z.H. Zhao, G. Yao, L.M. Luo, X. Zan, Q. Xu, Y.C. Wu, Anisotropy and stability of the mechanical properties of the W alloy plate reinforced with Y-Zr-O particles and prepared by a wet chemical method, Int. J. Refract. Met. H. 99 (2021) 105597. 
  48. G. Yao, X.Y. Tan, L.M. Luo, K.J. Hong, X. Zan, Q. Xu, J.Q. Liu, X.Y. Zhu, Y.Y. Lian, X. Liu, Y.C. Wu, Surface damage evolution during transient thermal shock of W-2% vol Y2O3 composite material in different surfaces, Fusion Eng. Des. 139 (2019) 86-95. 
  49. G. Yao, X.P. Liu, Z.H. Zhao, L.M. Luo, J.G. Cheng, X. Zan, Z.M. Wang, Q. Xu, Y. C. Wu, Excellent performance of W-Y2O3 composite via powder process improvement and Y2O3 refinement, Mater. Des. 212 (2021) 110249. 
  50. X.Y. Tan, P. Li, L.M. Luo, Q. Xu, K. Tokunaga, X. Zan, Y.C. Wu, Effect of second-phase particles on the properties of W-based materials under high-heat loading, Nucl. Mater. Energy 9 (2016) 399-404. 
  51. M.Y. Zhao, Z.J. Zhou, M. Zhong, J. Tan, Y.Y. Lian, X. Liu, Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies, J. Nucl. Mater. 470 (2016) 236-243. 
  52. X.Y. Tan, P. Li, L.M. Luo, H.Y. Chen, X. Zan, X.Y. Zhu, G.N. Luo, Y.C. Wu, Effect of mechanical milling on the microstructure of tungsten under He+ irradiation condition, Fusion Eng. Des. 100 (2015) 571-575. 
  53. X. X Zhang, Q.Z. Yan, The thermal crack characteristics of rolled tungsten in different orientations, J. Nucl. Mater. 444 (2014) 428-434. 
  54. X. X Zhang, Q.Z. Yan, Morphology evolution of La2O3 and crack characteristic in W-La2O3 alloy under transient heat loading, J. Nucl. Mater. 451 (2014) 283-291. 
  55. L.Q. Chen, B. Huang, X.L. Yang, Y.Y. Lian, X. Liu, J. Tang, High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys, J. Alloys Compd. 780 (2019) 388-399. 
  56. Z.M. Xie, S. Miao, T. Zhang, R. Liu, X.P. Wang, Q.F. Fang, T. Hao, Z. Zhuang, C. S. Liu, Y.Y. Lian, X. Liu, L.H. Cai, Recrystallization behavior and thermal shock resistance of the W-1.0 wt% TaC alloy, J. Nucl. Mater. 501 (2018) 282-292. 
  57. Y.Y. Lian, X. Liu, Z.K. Cheng, J. Wang, J.P. Song, Y. Yu, J.M. Chen, Thermal shock performance of CVD tungsten coating at elevated temperatures, J. Nucl. Mater. 455 (2014) 371-375. 
  58. Z.J. Zhou, G. Pintsuk, J. Linke, T. Hirai, M. Rodig, Y. Ma, C.C. Ge, Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure, Fusion Eng. Des. 85 (2010) 115-121. 
  59. S.E. Pestchanyi, J. Linke, Simulation of cracks in tungsten under ITER specific transient heat loads, Fusion Eng. Des. 82 (2007) 1657-1663. 
  60. T. Hirai, G. Pintsuk, J. Linke, M. Batilliot, Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures, J. Nucl. Mater. 390-391 (2009) 751-754. 
  61. J. Linke, T. Loewenhoff, V. Massaut, G. Pintsuk, G. Ritz, M. Rodig, A. Schmidt, C. Thomser, I. Uytdenhouwen, V. Vasechko, M. Wirtz, Performance of different tungsten grades under transient thermal loads, Nucl. Fusion 51 (2011) 073017. 
  62. G. Pintsuk, A. Prokhodtseva, I. Uytdenhouwen, Thermal shock characterization of tungsten deformed in two orthogonal directions, J. Nucl. Mater. 417 (2011) 481-486. 
  63. D.B. Marshall, P.E.D. Morgan, R.M. Housley, Debonding in multilayered composites of zirconia and LaPO4, J. Am. Ceram. Soc. 80 (1997) 1677-1683. 
  64. J. Reiser, L. Garrison, H. Greuner, J. Hoffmann, T. Weingartner, U. Jantsch, M. Klimenkov, P. Franke, S. Bonk, C. Bonnekoh, S. Sickinger, S. Baumgartner, D. Bolich, M. Hoffmann, R. Ziegler, J. Konrad, J. Hohe, A. Hoffmann, T. Mrotzek, M. Seiss, M. Rieth, A. Moslang, Ductilisation of tungsten (W): tungsten laminated composites, Int. J. Refract. Met. H 69 (2017) 66-109. 
  65. B.G. Butler, J.D. Paramore, J.P. Ligda, C. Ren, Z.Z. Fang, S.C. Middlemas, K. J. Hemker, Mechanisms of deformation and ductility in tungsten - a review, Int. J. Refract. Met. H 75 (2018) 248-261.
  66. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater. 12 (2013) 344-350. 
  67. M. Rieth, A. Hoffmann, Influence of microstructure and notch fabrication on impact bending properties of tungsten materials, Int. J. Refract. Met. H 28 (2010) 679-686. 
  68. C. Yin, D. Terentyev, T. Zhang, S. Nogami, S. Antusch, C.C. Chang, R.H. Petrov, T. Pardoen, Ductile to brittle transition temperature of advanced tungsten alloys for nuclear fusion applications deduced by miniaturized three-point bending tests, Int. J. Refract. Met. H 95 (2021) 105464.