DOI QR코드

DOI QR Code

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong (Korea Advanced Institute of Science and Technology) ;
  • Ji Ho Shin (Korea Advanced Institute of Science and Technology) ;
  • Byeong Seo Kong (Korea Advanced Institute of Science and Technology) ;
  • Junjie Chen (Institute of Materials, School of Materials Science and Engineering, Shanghai University) ;
  • Qian Xiao (Shanghai Institute of Applied Physics, Chinese Academy of Sciences) ;
  • Changheui Jang (Korea Advanced Institute of Science and Technology) ;
  • Yun-Jae Kim (Department of Mechanical Engineering, Korea University)
  • Received : 2023.09.22
  • Accepted : 2024.01.14
  • Published : 2024.06.25

Abstract

The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Keywords

Acknowledgement

This study was mainly supported by the National Research Foundation (NRF) of the MSIT of the Republic of Korea as the Nuclear R&D Program (2019M2D2A2050927).

References

  1. P. Dong, G.G. Scatigno, M.R. Wenman, Effect of salt composition and microstructure on stress corrosion cracking of 316L austenitic stainless steel for dry storage canisters, J. Nucl. Mater. 545 (2021) 152572, https://doi.org/10.1016/j.jnucmat.2020.152572. 
  2. G.G. Scatigno, M.P. Ryan, F. Giuliani, M.R. Wenman, The effect of prior cold work on the chloride stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions, Mater. Sci. Eng., A 668 (2016) 20-29, https://doi.org/10.1016/j.msea.2016.05.037. 
  3. L. Hackel, J. Rankin, M. Walter, C.B. Dane, W. Neuman, P. Oneid, G. Thomas, F. Bidrawn, Preventing stress corrosion cracking of spent nuclear fuel dry storage canisters, Procedia Struct. Integr. 19 (2019) 346-361, https://doi.org/10.1016/j.prostr.2019.12.038. 
  4. M. Mayuzumi, J. Tani, T. Arai, Chloride induced stress corrosion cracking of candidate canister materials for dry storage of spent fuel, Nucl. Eng. Des. 238 (2008) 1227-1232, https://doi.org/10.1016/j.nucengdes.2007.03.038. 
  5. L. Caseres, T.S. Mintz, Atmospheric stress corrosion cracking susceptibility of welded and unwelded 304, 304L, and 316L austenitic stainless steels commonly used for dry cask storage containers exposed to marine, in: NUREG/CR-7030; U.S. NRC Report, Office of Nuclear Regulatory Research, 2010. https://www.nrc.gov/docs/ML1031/ML103120081.pdf. 
  6. T. Saegusa, G. Yagawa, M. Aritomi, Topics of research and development on concrete cask storage of spent nuclear fuel, Nucl. Eng. Des. 238 (2008) 1168-1174, https://doi.org/10.1016/j.nucengdes.2007.03.031. 
  7. H. Takeda, M. Wataru, K. Shirai, T. Saegusa, Heat removal verification tests using concrete casks under normal condition, Nucl. Eng. Des. 238 (2008) 1196-1205, https://doi.org/10.1016/j.nucengdes.2007.03.034. 
  8. Y. Xie, J. Zhang, Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: a review, J. Nucl. Mater. 466 (2015) 85-93, https://doi.org/10.1016/j.jnucmat.2015.07.043. 
  9. X. Wang, Z. Yang, Z. Wang, Q. Shi, B. Xu, C. Zhou, L. Zhang, The influence of copper on the stress corrosion cracking of 304 stainless steel, Appl. Surf. Sci. 478 (2019) 492-498, https://doi.org/10.1016/j.apsusc.2019.01.291. 
  10. A. Turnbull, S. Zhou, Pit to crack transition in stress corrosion cracking of a steam turbine disc steel, Corrosion Sci. 46 (2004) 1239-1264, https://doi.org/10.1016/j.corsci.2003.09.017. 
  11. L.K. Zhu, Y. Yan, L.J. Qiao, A.A. Volinsky, Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load, Corrosion Sci. 77 (2013) 360-368, https://doi.org/10.1016/j.corsci.2013.08.028. 
  12. R. Schoell, L. Xi, Y. Zhao, X. Wu, Z. Yu, P. Kenesei, J. Almer, Z. Shayer, D. Kaoumi, In situ synchrotron X-ray tomography of 304 stainless steels undergoing chlorine-induced stress corrosion cracking, Corrosion Sci. 170 (2020), https://doi.org/10.1016/j.corsci.2020.108687. 
  13. M.F. Chiang, H.H. Hsu, M.C. Young, J.Y. Huang, Mechanical degradation of cold-worked 304 stainless steel in salt spray environments, J. Nucl. Mater. 422 (2012) 58-68, https://doi.org/10.1016/j.jnucmat.2011.12.008. 
  14. M.C. Remillieux, D. Kaoumi, Y. Ohara, M.A. Stuber Geesey, L. Xi, R. Schoell, C. R. Bryan, D.G. Enos, D.A. Summa, T.J. Ulrich, B.E. Anderson, Z. Shayer, Detecting and imaging stress corrosion cracking in stainless steel, with application to inspecting storage canisters for spent nuclear fuel, NDT E Int. 109 (2020), https://doi.org/10.1016/j.ndteint.2019.102180. 
  15. C. Ornek, D.L. Engelberg, Toward understanding the effects of strain and chloride deposition density on atmospheric chloride-induced stress corrosion cracking of type 304 austenitic stainless steel under MgCl 2 and FeCl 3 :MgCl 2 droplets, Corrosion 75 (2019) 167-182, https://doi.org/10.5006/3026. 
  16. C. Garcia, F. Martin, P. De Tiedra, S. Alonso, M.L. Aparicio, Stress corrosion cracking behavior of cold-worked and sensitized type 304 stainless steel using the slow strain rate test, Corrosion 58 (2002) 849-857, https://doi.org/10.5006/1.3287668. 
  17. C. Garcia, F. Martin, P. De Tiedra, J.A. Heredero, M.L. Aparicio, Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels, Corrosion Sci. 43 (2001) 1519-1539, https://doi.org/10.1016/S0010-938X(00)00165-7. 
  18. O.M. Alyousif, R. Nishimura, The effect of test temperature on SCC behavior of austenitic stainless steels in boiling saturated magnesium chloride solution, Corrosion Sci. 48 (2006) 4283-4293, https://doi.org/10.1016/j.corsci.2006.01.014. 
  19. R.K. Singh Raman, W.H. Siew, Stress corrosion cracking of an austenitic stainless steel in nitrite-containing chloride solutions, Materials 7 (2014) 7799-7808, https://doi.org/10.3390/ma7127799. 
  20. A. Sjong, L. Eiselstein, Marine atmospheric SCC of unsensitized stainless steel rock climbing protection, J. Fail. Anal. Prev. 8 (2008) 410-418, https://doi.org/10.1007/s11668-008-9158-1. 
  21. F. King, Nuclear Waste Canister Materials: Corrosion Behavior and Long-Term Performance in Geological Repository Systems, Woodhead Publishing, 2017, https://doi.org/10.1016/B978-0-08-100642-9.00013-X. 
  22. M.G. El-Samrah, A.F. Tawfic, S.E. Chidiac, Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: a review, Ann. Nucl. Energy 160 (2021) 108408, https://doi.org/10.1016/j.anucene.2021.108408. 
  23. R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M. O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method. I. Precipitation-free states, Corrosion Sci. 43 (2001) 707-726, https://doi.org/10.1016/S0010-938X(00)00087-1. 
  24. R. Hill, A.L. Perez, New steels and corrosion-resistant alloys, Trends Oil Gas Corrosion Res. Technol. (2017), https://doi.org/10.1016/B978-0-08-101105-8.00026-7. 
  25. Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, Y. Wu, Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel, Materials 6 (2014) 6604-6619, https://doi.org/10.3390/ma7096604. 
  26. J.S. Kim, W.H.A. Peelen, K. Hemmes, R.C. Makkus, Effect of alloying elements on the contact resistance and the passivation behaviour of stainless steels, Corrosion Sci. 44 (2002) 635-655, https://doi.org/10.1016/S0010-938X(01)00107-X. 
  27. R. Merello, F.J. Botana, J. Botella, M.V. Matres, M. Marcos, Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn-N duplex stainless steels, Corrosion Sci. 45 (2003) 909-921, https://doi.org/10.1016/S0010-938X(02)00154-3. 
  28. J.R. Donahue, J.T. Burns, Effect of chloride concentration on the corrosion-fatigue crack behavior of an age-hardenable martensitic stainless steel, Int. J. Fatig. 91 (2016) 79-99, https://doi.org/10.1016/j.ijfatigue.2016.05.022. 
  29. ASTM A240/A240M-22b, Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM International, West Conshohocken, PA, USA, 2022, https://doi.org/10.1520/A0240_A0240M-22B. 
  30. J.W. Simmons, Overview: high-nitrogen alloying of stainless steels, Mater. Sci. Eng., A 207 (1996) 159-169, https://doi.org/10.1016/0921-5093(95)09991-3. 
  31. S. Ghosh, V. Kain, Microstructural changes in AISI 304L stainless steel due to surface machining: effect on its susceptibility to chloride stress corrosion cracking, J. Nucl. Mater. 403 (2010) 62-67, https://doi.org/10.1016/j.jnucmat.2010.05.028. 
  32. S. Ghosh, V. Kain, Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel, Mater. Sci. Eng., A 527 (2010) 679-683, https://doi.org/10.1016/j.msea.2009.08.039. 
  33. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, S.K. Baveja, Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel, Mater. Des. 32 (2011) 3823-3831, https://doi.org/10.1016/j.matdes.2011.03.012. 
  34. O.M. Alyousif, R. Nishimura, The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions, Corrosion Sci. 49 (2007) 3040-3051, https://doi.org/10.1016/j.corsci.2006.12.023. 
  35. P.S. Kumar, S.G. Acharyya, S.V.R. Rao, K. Kapoor, Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel, Mater. Sci. Eng., A 687 (2017) 193-199, https://doi.org/10.1016/j.msea.2017.01.079. 
  36. H.Y. Ha, H.S. Kwon, Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels, Electrochim. Acta 52 (2007) 2175-2180, https://doi.org/10.1016/j.electacta.2006.08.034. 
  37. J.S. Lee, K. Fushimi, T. Nakanishi, Y. Hasegawa, Y.S. Park, Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution, Corrosion Sci. 89 (2014) 111-117, https://doi.org/10.1016/j.corsci.2014.08.014. 
  38. H. Tan, Y. Jiang, B. Deng, T. Sun, J. Xu, J. Li, Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750, Mater. Charact. 60 (2009) 1049-1054, https://doi.org/10.1016/j.matchar.2009.04.009. 
  39. H.Y. Ha, M.H. Jang, T.H. Lee, J. Moon, Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel, Corrosion Sci. 89 (2014) 154-162, https://doi.org/10.1016/j.corsci.2014.08.021. 
  40. ASTM E8/E8M-22, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, USA, 2022, https://doi.org/10.1520/E0008_E0008M-22.
  41. BS ISO 15158:2014, Corrosion of Metals and Alloys - Method of Measuring the Pitting Potential for Stainless Steels by Potentiodynamic Control in Sodium Chloride Solution, BSI standards, Switzerland, 2014. 
  42. ASTM G39-99 (Reapproved 2021), Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens, ASTM International, West Conshohocken, PA, USA, 2021, https://doi.org/10.1520/G0039-99R21. 
  43. F. Mujika, On the difference between flexural moduli obtained by three-point and four-point bending tests, Polym. Test. 25 (2006) 214-220, https://doi.org/10.1016/j.polymertesting.2005.10.006. 
  44. ASTM G123-00 (Reapproved 2015), Standard Test Method for Evaluating Stress-Corrosion Cracking of Stainless Alloys with Different Nickel Content in Boiling Acidified Sodium Chloride Solution, ASTM International, West Conshohocken, PA, USA, 2015, https://doi.org/10.1520/G0123-00R15. 
  45. R. Gunn (Ed.), Duplex Stainless Steels: Microstructure, Properties and Applications, Woodhead publishing, 1997. 
  46. M. Okayasu, D. Ishida, Effect of microstructural characteristics on mechanical properties of austenitic, ferritic, and γ-α duplex stainless steels, Metall. Mater. Trans. A 50 (2019) 1380-1388, https://doi.org/10.1007/s11661-018-5083-4. 
  47. N. Kumar, M. Fusco, M. Komarasamy, R.S. Mishra, M. Bourham, K.L. Murty, Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy, J. Nucl. Mater. 495 (2017) 154-163, https://doi.org/10.1016/j.jnucmat.2017.08.015. 
  48. T. Shibata, T. Takeyama, Stochastic theory pitting corrosion, Corrosion 33 (7) (1977) 243-251. 
  49. H.Y. Ha, T.H. Lee, C.G. Lee, H. Yoon, Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel, Corrosion Sci. 149 (2019) 226-235, https://doi.org/10.1016/j.corsci.2019.01.001. 
  50. Y. Tang, Y. Zuo, J. Wang, X. Zhao, B. Niu, B. Lin, The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions, Corrosion Sci. 80 (2014) 111-119, https://doi.org/10.1016/j.corsci.2013.11.015. 
  51. W. Tian, N. Du, S. Li, S. Chen, Q. Wu, Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution, Corrosion Sci. 85 (2014) 372-379, https://doi.org/10.1016/j.corsci.2014.04.033. 
  52. Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corrosion Sci. 119 (2017) 33-45, https://doi.org/10.1016/j.corsci.2017.02.019. 
  53. L. Jin, Y. Guo, F. Liu, Electrochemical and stress corrosion behaviors of 316L stainless steel in the borate solution, Int. J. Electrochem. Sci. 15 (2020) 4421-4433, https://doi.org/10.20964/2020.05.44. 
  54. A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N. D. Fairweather, A.K. Bradbury, Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure, Corrosion Sci. 53 (2011) 3398-3415, https://doi.org/10.1016/j.corsci.2011.06.020. 
  55. N. Zhou, R. Pettersson, R. Lin Peng, M. Schonning, Effect of surface grinding on chloride induced SCC of 304L, Mater. Sci. Eng. 658 (2016) 50-59, https://doi.org/10.1016/j.msea.2016.01.078. 
  56. M. Mayuzumi, T. Arai, K. Hide, Chloride induced stress corrosion cracking of type 304 and 304L stainless steels in air, Zair. Kankyo 52 (2003) 166-170, https://doi.org/10.3323/jcorr1991.52.166. 
  57. T. Magnin, A. Chambreuil, B. Bayle, The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys, Acta Mater. 44 (1996) 1457-1470, https://doi.org/10.1016/1359-6454(95)00301-0. 
  58. D.T. Spencer, M.R. Edwards, M.R. Wenman, C. Tsitsios, G.G. Scatigno, P.R. Chard-Tuckey, The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions, Corrosion Sci. 88 (2014) 76-88, https://doi.org/10.1016/j.corsci.2014.07.017. 
  59. C. Ornek, D.L. Engelberg, Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel, Mater. Sci. Eng. 666 (2016) 269-279, https://doi.org/10.1016/j.msea.2016.04.062. 
  60. C. Ornek, D.L. Engelberg, SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel, Corrosion Sci. 99 (2015) 164-171, https://doi.org/10.1016/j.corsci.2015.06.035. 
  61. S.S.M. Tavares, V.G. Silva, J.M. Pardal, J.S. Corte, Investigation of stress corrosion cracks in a UNS S32750 superduplex stainless steel, Eng. Fail. Anal. 35 (2013) 88-94, https://doi.org/10.1016/j.engfailanal.2012.12.013. 
  62. E. Symniotis, Galvanic effects on the active dissolution of duplex stainless steels, Corrosion 46 (1990) 2-12, https://doi.org/10.5006/1.3585062. 
  63. O. Article, P. Centre, E.M. Centre, P. Centre, Low-temperature Environment-Assisted Cracking of Grade 2205 Duplex Stainless Steel beneath a MgCl2: FeCl3 Salt Droplet Key Words, 9312, 2015, pp. 384-399, https://doi.org/10.5006/1888. 
  64. N. Zhou, R.L. Peng, M. Schonning, R. Pettersson, SCC of 2304 duplex stainless steel - microstructure, residual stress and surface grinding effects, Materials 10 (2017) 221, https://doi.org/10.3390/ma10030221, 1-18. 
  65. S. Aoki, H. Yakuwab, K. Mitsuhashi, J. Sakai, Dissolution behavior of α and γ phases of a duplex stainless steel in a simulated crevice solution, 25, 2010, pp. 17-22. 
  66. L. Weber, P.J. Uggowitzer, Partitioning of chromium and molybdenum in super duplex stainless steels with respect to nitrogen and nickel content, Mater. Sci. Eng., A 242 (1998) 222-229, https://doi.org/10.1016/s0921-5093(97)00521-2. 
  67. Y. Hou, J. Zhao, C.Q. Cheng, L. Zhang, J. Li, B.J. Liu, T.S. Cao, The metastable pitting corrosion of 2205 duplex stainless steel under bending deformation, J. Alloys Compd. 830 (2020) 154422, https://doi.org/10.1016/j.jallcom.2020.154422. 
  68. X.Y. Zhao, C.Q. Cheng, D.J. Zhang, Y.N. Zhao, T.S. Cao, S. Zhong, L. Zhang, J. Zhao, Effect of U-bending deformation on pitting corrosion of 2205 duplex stainless steel under wet-dry cycling of chloride salt droplets, Corrosion Sci. 218 (2023) 111185, https://doi.org/10.1016/j.corsci.2023.111185.