DOI QR코드

DOI QR Code

Development and application analysis of high-energy neutron radiation shielding materials from tungsten boron polyethylene

  • Qiankun Shao (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Qingjun Zhu (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Yuling Wang (Anhui Yingliu Jiuyuan Nuclear New Material Technology Co., Ltd) ;
  • Shaobao Kuang (Anhui Yingliu Jiuyuan Nuclear New Material Technology Co., Ltd) ;
  • Jie Bao (Department of Nuclear Physics, China Institute of Atomic Energy) ;
  • Songlin Liu (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences)
  • Received : 2023.11.04
  • Accepted : 2024.01.14
  • Published : 2024.06.25

Abstract

The purpose of this study is to develop a high-energy neutron shielding material applied in proton therapy environment. Composite shielding material consisting of 10.00 wt% boron carbide particles (B4C), 13.64 wt% surface-modified cross-linked polyethylene (PE), and 76.36 wt% tungsten particles were fabricated by hot-pressure sintering method, where the optimal ratio of the composite is determined by the shielding effect under the neutron field generated in typical proton therapy environment. The results of Differential Scanning Calorimetry measurements (DSC) and tensile experiment show that the composite has good thermal and mechanical properties. In addition, the high energy-neutron shielding performance of the developed material was evaluated using cyclotron proton accelerator with 100 MeV proton. The simulation shows a 99.99% decrease in fast neutron injection after 44 cm shielding, and the experiment result show a 99.70% decrease. Finally, the shielding effect of replacing part of the shielding material of the proton therapy hall with the developed material was simulated, and the results showed that the total neutron injection decreased to 0.99‰ and the neutron dose reduced to 1.10‰ before the enhanced shielding. In summary, the developed material is expected to serve as a shielding enhancement material in the proton therapy environment.

Keywords

Acknowledgement

This work is supported by the Fund of Innovation Center of Radiation Application (Grant No. KFZC2021010101), China National special project for magnetic confined nuclear fusion energy of China (Grant No. 2017YFE0301604, 2017YFE0301601), and by Joint Laboratory of Extreme Environmental Materials and Special Processes, Institute of Energy of Hefei Comprehensive National Science Center.

References

  1. F. Cataldo, M. Prata, Neutron radiation shielding composites for deep space exploration: an introduction, in: Micro and Nanostructured Composite Materials for Neutron Shielding Applications, Elsevier, 2020, pp. 263-285, https://doi.org/10.1016/B978-0-12-819459-1.00010-6. 
  2. C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel, E. Grulke, Polyethylene/boron nitride composites for space radiation shielding, J. Appl. Polym. Sci. 109 (4) (2008) 2529-2538, https://doi.org/10.1002/app.27949. 
  3. Y. Kiyanagi, Accelerator-based neutron source for boron neutron capture therapy, Therap. Radiol. Oncol. 2 (0) (2018), https://doi.org/10.21037/tro.2018.10.05. Art. no. 0. 
  4. A.J. Molinari, et al., Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels, Acta Oncol. 54 (1) (2015) 99-106, https://doi.org/10.3109/0284186X.2014.925140. 
  5. M. Pouryavi, S. Farhad Masoudi, F. Rahmani, Radiation shielding design of BNCT treatment room for D-T neutron source, Appl. Radiat. Isot. 99 (2015) 90-96, https://doi.org/10.1016/j.apradiso.2015.02.016. 
  6. R.M. Howell, E.A. Burgett, Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system, Med. Phys. 41 (9) (2014) 092104, https://doi.org/10.1118/1.4892929. 
  7. G. Hu, G. Shi, H. Hu, Q. Yang, B. Yu, W. Sun, Development of gradient composite shielding material for shielding neutrons and gamma rays, Nucl. Eng. Technol. 52 (10) (2020) 2387-2393, https://doi.org/10.1016/j.net.2020.03.029. 
  8. K. Singh, N. Singh, R. Kaundal, Gamma-ray shielding and structural properties of PbO-SiO 2 glasses, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 944-948, https://doi.org/10.1016/j.nimb.2008.02.004. 
  9. R.K. Chauhan, M. Mudgal, S. Verma, S.S. Amritphale, S. Das, A. Shrivastva, Development and design mix of radiation shielding concrete for gamma-ray shielding, J. Inorg. Organomet. Polym. 27 (4) (2017) 871-882, https://doi.org/10.1007/s10904-017-0531-y. 
  10. E. Yilmaz, H. Baltas, E. Kiris, I. Ustabas, U. Cevik, A.M. El-Khayatt, Gamma ray and neutron shielding properties of some concrete materials, Ann. Nucl. Energy 38 (10) (2011) 2204-2212, https://doi.org/10.1016/j.anucene.2011.06.011. 
  11. G. Tyagi, A. Singhal, S. Routroy, D. Bhunia, M. Lahoti, Radiation Shielding Concrete with alternate constituents: an approach to address multiple hazards, J. Hazard. Mater. 404 (2021) 124201, https://doi.org/10.1016/j.jhazmat.2020.124201. 
  12. B. Gan, et al., Research progress of metal-based shielding materials for neutron and gamma rays, Acta Metall. Sin. 34 (12) (2021) 1609-1617, https://doi.org/10.1007/s40195-021-01259-5. 
  13. T. Hayashi, K. Tobita, Y. Nakamori, S. Orimo, Advanced neutron shielding material using zirconium borohydride and zirconium hydride, J. Nucl. Mater. 386-388 (2009) 119-121, https://doi.org/10.1016/j.jnucmat.2008.12.073. 
  14. C.V. More, Z. Alsayed, Mohamed S. Badawi, Abouzeid A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review, Environ. Chem. Lett. 19 (3) (2021) 2057-2090, https://doi.org/10.1007/s10311-021-01189-9. 
  15. M.K. Moradllo, C.-W. Chung, M.H. Keys, A. Choudhary, S.R. Reese, W.J. Weiss, Use of borosilicate glass powder in cementitious materials: pozzolanic reactivity and neutron shielding properties, Cement Concr. Compos. 112 (2020) 103640, https://doi.org/10.1016/j.cemconcomp.2020.103640. 
  16. B. Aygun, et al., Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding, Radiat. Phys. Chem. 174 (2020) 108897, https://doi.org/10.1016/j.radphyschem.2020.108897. 
  17. M.I. Sayyed, et al., Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems, Prog. Nucl. Energy 118 (2020) 103118, https://doi.org/10.1016/j.pnucene.2019.103118. 
  18. M.I. Sayyed, et al., Extensive study of newly developed highly dense transparent PbO-WO3-BaO-Na2O-B2O3 glasses for radiation shielding applications, J. Non-Cryst. Solids 521 (2019) 119521, https://doi.org/10.1016/j.jnoncrysol.2019.119521. 
  19. S.T. Abdulrahman, Z. Ahmad, S. Thomas, A.A. Rahman, Introduction to neutron-shielding materials, in: Micro and Nanostructured Composite Materials for Neutron Shielding Applications, Elsevier, 2020, pp. 1-23, https://doi.org/10.1016/B978-0-12-819459-1.00001-5. 
  20. B. Aygun, E. Sakar, V.P. Singh, M.I. Sayyed, T. Korkut, A. Karabulut, Experimental and Monte Carlo simulation study on potential new composite materials to moderate neutron-gamma radiation, Prog. Nucl. Energy 130 (2020) 103538, https://doi.org/10.1016/j.pnucene.2020.103538. 
  21. Z. Huo, S. Zhao, G. Zhong, H. Zhang, L. Hu, Surface modified-gadolinium/boron/polyethylene composite with high shielding performance for neutron and gamma-ray, Nuclear Mater. Energy 29 (2021) 101095. 
  22. T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113, https://doi.org/10.1016/j.pnucene.2019.01.016. 
  23. A.L. Wani, A. Ara, J.A. Usmani, Lead toxicity: a review, Interdiscipl. Toxicol. 8 (2) (Jun. 2015) 55-64, https://doi.org/10.1515/intox-2015-0009. 
  24. N.J. AbuAlRoos, N.A. Baharul Amin, R. Zainon, Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review, Radiat. Phys. Chem. 165 (2019) 108439, https://doi.org/10.1016/j.radphyschem.2019.108439. 
  25. N. Jamal AbuAlRoos, M.N. Azman, N.A. Baharul Amin, R. Zainon, Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine, Phys. Med. 78 (2020) 48-57, https://doi.org/10.1016/j.ejmp.2020.08.017. 
  26. P. Wang, X. Tang, H. Chai, D. Chen, Y. Qiu, Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm 2 O 3/polyimide gamma ray/neutron shielding material, Fusion Eng. Des. 101 (2015) 218-225, https://doi.org/10.1016/j.fusengdes.2015.09.007. 
  27. L.B.T. La, Y.-K. Leong, C. Leatherday, P.I. Au, K.J. Hayward, L.-C. Zhang, X-ray protection, surface chemistry and rheology of ball-milled submicron Gd2O3 aqueous suspension, Colloids Surf. A Physicochem. Eng. Asp. 501 (2016) 75-82, https://doi.org/10.1016/j.colsurfa.2016.04.058. 
  28. L.B.T. La, et al., The interaction between encapsulated Gd2O3 particles and polymeric matrix: the mechanism of fracture and X-ray attenuation properties, Colloids Surf. A Physicochem. Eng. Asp. 535 (2017) 175-183, https://doi.org/10.1016/j.colsurfa.2017.09.038. 
  29. P. Zhang, C. Jia, J. Li, W. Wang, Shielding composites for neutron and gamma-radiation with Gd2O3@W core-shell structured particles, Mater. Lett. 276 (2020) 128082, https://doi.org/10.1016/j.matlet.2020.128082. 
  30. J.G. Fantidis, The comparison between simple and advanced shielding materials for the shield of portable neutron sources, Int. J. Radiat. Res. 13 (4) (2015) 10, https://doi.org/10.7508/ijrr.2015.04.001. 
  31. E. Demir, M. Karabas, S. Sonmez, A.B. Tugrul, M.L. Ovecoglu, B. Buyuk, Comparison of radiation properties of tungsten and additive metal coatings on 321 stainless steel substrate, Acta Phys. Pol., A 131 (1) (2017) 71-73, https://doi.org/10.12693/APhysPolA.131.71. 
  32. M.I. Sayyed, et al., Fabrication, characterization of neutron and proton shielding investigation of tungsten oxide dispersed-ultra high Mw polyethylene, Chem. Phys. 548 (2021) 111227, https://doi.org/10.1016/j.chemphys.2021.111227. 
  33. L.M. Garrison, et al., PHENIX U.S.-Japan collaboration investigation of thermal and mechanical properties of thermal neutron-shielded irradiated tungsten, Fusion Sci. Technol. 75 (6) (2019) 499-509, https://doi.org/10.1080/15361055.2019.1602390. 
  34. M.A.M. Uosif, A.M.A. Mostafa, S.A.M. Issa, H.O. Tekin, Z.A. Alrowaili, O. Kilicoglu, Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: an experimental study, J. Non-Cryst. Solids 532 (2020) 119882, https://doi.org/10.1016/j.jnoncrysol.2019.119882. 
  35. C.G. Windsor, et al., Tungsten boride shields in a spherical tokamak fusion power plant, Nucl. Fusion 61 (8) (2021) 086018, https://doi.org/10.1088/1741-4326/ac09ce. 
  36. N.I. Cherkashina, et al., Neutron attenuation in some polymer composite material, Adv. Space Res. (2023) S0273117723009572, https://doi.org/10.1016/j.asr.2023.12.003. 
  37. M.I. Sayyed, et al., MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications, Radiat. Phys. Chem. 172 (2020) 108852, https://doi.org/10.1016/j.radphyschem.2020.108852. 
  38. Z. Alsayed, Mohamed S. Badawi, R. Awad, Ahmed M. El-Khatib, Abouzeid A. Thabet, Investigation of γ -ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite, Phys. Scripta 95 (8) (2020) 085301, https://doi.org/10.1088/1402-4896/ab9a6e. 
  39. Y. Zhang, F. Chen, X. Tang, H. Huang, T. Chen, X. Sun, Boracic polyethylene/polyethylene wax blends and open-cell nickel foams as neutron-shielding composite, J. Reinforc. Plast. Compos. 37 (3) (2018) 181-190, https://doi.org/10.1177/0731684417738335. 
  40. M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, A. A. Thabet, Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials, J. Clean. Prod. 176 (2018) 276-287, https://doi.org/10.1016/j.jclepro.2017.12.100. 
  41. H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, Q.C. Wu, The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites, J. Alloys Compd. 632 (2015) 23-29, https://doi.org/10.1016/j.jallcom.2015.01.048. 
  42. Z. Uddin, T. Yasin, M. Shafiq, A. Raza, A. Zahur, On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites, Radiat. Phys. Chem. 166 (2020) 108450, https://doi.org/10.1016/j.radphyschem.2019.108450. 
  43. Z. Soltani, A. Beigzadeh, F. Ziaie, E. Asadi, Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: experimental and simulation studies, Radiat. Phys. Chem. 127 (2016) 182-187, https://doi.org/10.1016/j.radphyschem.2016.06.027. 
  44. Design and construction progress of Cyciae-100, A 100 Mev H- cyclotron at Ciae, Cyclotrons Appl. (2007) 6, https://doi.org/10.1016/j.nimb.2008.05.021. 
  45. T.T. Bohlen, et al., The FLUKA code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211-214, https://doi.org/10.1016/j.nds.2014.07.049. 
  46. M. Silari, G.R. Stevenson, Radiation protection at high energy proton accelerators, Radiat. Protect. Dosim. 96 (4) (2001) 311-321, https://doi.org/10.1093/oxfordjournals.rpd.a006620. 
  47. R.J. Sheu, J. Liu, J.P. Wang, K.K. Lin, G.H. Luo, Characteristics of prompt radiation field and shielding design for Taiwan photon source, Nucl. Technol. 168 (2) (2009) 417-423, https://doi.org/10.13182/NT09-A9219.