• Title/Summary/Keyword: Tungsten material

Search Result 406, Processing Time 0.03 seconds

Evaluation on Mechanical Properties of Sintered Tungsten Materials by Solvents (소결된 텅스텐 재료의 용매에 의한 특성 평가)

  • Park, Kwang-Mo;Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.289-294
    • /
    • 2021
  • Tungsten (W) is used as a facing material for nuclear fusion reactors, and it is used in conjunction with structural materials such as copper alloy (CuCrZr), graphite, or stainless steel. On the other hand, since tungsten is a material with a high melting point, a method that can be manufactured at a lower temperature is important. Therefore, in this study, tungsten, which is a facing material, was attempted to be manufactured using a pressure sintering method. Material properties of sintered tungsten materials were analyzed for each solvent using two types of solvents, acetone and polyethylene glycol. The sintered tungsten material using acetone as a solvent exhibited a hardness value of about 255 Hv, and when polyethylene glycol was used, a hardness value of about 200 Hv was shown. The flexural strength of the sintered tungsten material was 870 MPa and 307 MPa, respectively, when acetone and polyethylene glycol were used as solvents. The sintered tungsten material using acetone as a solvent caused densification between particles, which served as a factor of increasing the strength.

Effect on Mechanical Properties of Tungsten by Sintering Temperature (텅스텐 특성에 대한 소결온도의 영향)

  • Park, Kwang-Mo;Lee, Sang-Pill;Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles

  • Gang Yao;Hong-Yu Chen;Lai-Ma Luo;Xiang Zan;Yu-Cheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2141-2152
    • /
    • 2024
  • Tungsten is the most promising plasma facing material for fusion reactors. Rolled W-Y2(Zr)O3 bulk material has been successfully produced in this study for future fusion engineering applications. The introduction of Zr is conducive to the refinement of the second phase particles. Nano-sized Y-Zr-O particles are observed in the powder and bulk samples. Related results show that the Y-Zr-O particle dispersion distribution improves the heat load resistance of W-Y2(Zr)O3 composite material. For four-point bend experiments in the same sampling direction, the DBTT of W-Y2(Zr)O3 composite materials is lower compared to the pure tungsten. For the same material, the DBTT of the material was selected for testing along the RD direction is lower compared to the material was selected for testing along the TD direction. Findings of this study provide suggestions for the subsequent industrial preparation of nanoscale particle-doped tungsten materials.

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF

The Deposition and Characterization of Electrochromic Tungsten Oxide Thin Films (산화텅스텐 박막의 제조 및 전기변색 특성)

  • 하승호;이진민;박승희;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.120-123
    • /
    • 1993
  • This paper describes the deposition and characteristics of electrochromic tungsten oxide thin films for electrochromic smart windows. Tungsten Oxide thin films(WO$_3$) are deposited by thermal evaporation techniques. By varying deposition parameters, WO$_3$ thin films exhibit different optical properties. The electrochromic devices are consist of ITO glass/ WO$_3$ thin films/ LiClO$_4$-propylene carbonate electrolyte/ counter electrode. The electrochromic properties of tungsten oxide thin films with different deposition condition ale investigated.

  • PDF

Hydrometallurgical Processes for the Recovery of Tungsten from Ores and Secondary Resources (원광석 및 2차 자원으로부터 텅스텐 습식 제련 기술)

  • Ahn, Hyeong Hun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.3-10
    • /
    • 2018
  • Tungsten is a metal with high melting point and used as a raw material for the production of super alloys. Tungsten exists as $WO{_4}^{2-}$ in alkaline solution. As solution pH decreases, polymerization reaction of $WO{_4}^{2-}$ occurs to result in the precipitation of tungstic acid. The hydrometallurgical process for the recovery of tungsten from ores or secondary resources can be classified as acid and alkaline leaching. In selecting a process for the recovery of pure tungsten from secondary resources, the nature and concentration of impurities in the secondary resources and the manufactured tungsten materials should be considered.

Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content (소결첨가재에 의한 텅스텐의 기계적 특성평가)

  • Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.621-626
    • /
    • 2022
  • Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.

Characteristics of Re-Jr Coating Thin Film on Tungsten Carbide Core Surface (Tungsten Carbide 코어 표면에 코팅 된 Re-Ir 박막 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, adrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

  • PDF

Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester

  • Can, Omer;Belgin, Ezgi Eren;Aycik, Gul Asiye
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1642-1651
    • /
    • 2021
  • In this study, isophtalic neopentyl glycol polyester (NPG-PES) based composites with different loading ratios of pure tungsten metal (W), tungsten (VI) oxide (WO3), tungsten boron (WB) and tungsten carbide (WC) composites were prepared as alternative shielding materials for ionizing electromagnetic radiation (IEMR) shielding. Structural characterizations of the composites were done. Gamma spectrometric analysis of composites for 80-2000 keV energy range was performed and their usability as IEMR shielding was discussed. As a result, the produced composites showed a shielding performance of 60-100% of the lead (the most widely used IEMR shielding material) depending on the reinforcement material, reinforcement loading rate and experimental conditions. Thus, it was reported that produced composites could be an alternative to lead shieldings that have several disadvantages as toxic properties, difficulty of processing and inelasticity.

A Study on the Dynamic Material's Characteristics of Tungsten Alloy using Split Hopkinson Pressure Bar (홉킨슨 압축봉 장치를 이용한 텅스텐 합금의 동적 재료 특성에 관한 연구)

  • Hwang, Doo-Soon;Rho, Beong-Lae;Hong, Sung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.92-99
    • /
    • 2005
  • Tungsten heavy metal is characterized by a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as fur defense purposes(kinetic energy Penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program, the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.