DOI QR코드

DOI QR Code

Hydrometallurgical Processes for the Recovery of Tungsten from Ores and Secondary Resources

원광석 및 2차 자원으로부터 텅스텐 습식 제련 기술

  • Ahn, Hyeong Hun (Department of Advanced Material Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Material Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 안형훈 (목포대학교 공과대학 신소재공학과) ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2018.10.01
  • Accepted : 2018.10.26
  • Published : 2018.12.28

Abstract

Tungsten is a metal with high melting point and used as a raw material for the production of super alloys. Tungsten exists as $WO{_4}^{2-}$ in alkaline solution. As solution pH decreases, polymerization reaction of $WO{_4}^{2-}$ occurs to result in the precipitation of tungstic acid. The hydrometallurgical process for the recovery of tungsten from ores or secondary resources can be classified as acid and alkaline leaching. In selecting a process for the recovery of pure tungsten from secondary resources, the nature and concentration of impurities in the secondary resources and the manufactured tungsten materials should be considered.

텅스텐은 고융점금속으로 주로 초경합금으로 사용되고 있다. 알칼리용액에서 텅스텐은 $WO{_4}^{2-}$로 존재하는데 용액의 pH가 감소함에 따라 중합반응이 일어나며 텅스텐산으로 침전된다. 따라서 원광석 및 2차 자원으로부터 텅스텐 회수를 위한 습식 제련 기술은 산침출과 알칼리침출로 대별된다. 2차 자원에 함유된 금속의 종류와 함유량 및 텅스텐의 소재화를 고려해서 2차 자원으로부터 텅스텐을 고순도로 회수하기 위한 공정을 선택해야 한다.

Keywords

RSOCB3_2018_v27n6_3_f0001.png 이미지

Fig. 1. Generalized process flow sheet for the production of tungsten.

RSOCB3_2018_v27n6_3_f0002.png 이미지

Fig. 2. Scheme of the distribution of tungsten ions in aqueous solution.

RSOCB3_2018_v27n6_3_f0003.png 이미지

Fig. 3. Scheme for conventional recovery process of tungsten from WC-Co scrap by acid leaching.

RSOCB3_2018_v27n6_3_f0004.png 이미지

Fig. 4. Scheme for conventional recovery process of tungsten from WC-Co scrap by alkaline leaching.

Table 1. Properties of the tungsten minerals

RSOCB3_2018_v27n6_3_t0001.png 이미지

Table 2. Several processes for the extraction of tungsten from scheelite and wolframite

RSOCB3_2018_v27n6_3_t0002.png 이미지

References

  1. D.-G. Ahn, 2008 : Tungsten Status and Cemented Carbide Development, Trend in metals & Materials Engineering, 21, pp.28-34.
  2. S. J. Woo, L. S. Hyun, H. H. Seon, K. H. Yoon and H. S. Jik, 2012: Industrial Supply Chain Trend of Domestic Tungsten, Journal of Korean Powder Metallurgy Institute, 19, 79-86. https://doi.org/10.4150/KPMI.2012.19.1.079
  3. G. H. Ha, 2013 : Trend in metals & Materials Engineering, 3, pp.43-49.
  4. L. Chipise, P. K. Jain and L. A. Cornish, 2018 : Magnetic and microstructural aspects of WC-VC-Co-Ru alloys, International Journal of Refractory Metals and Hard Materials, 76, pp.49-56. https://doi.org/10.1016/j.ijrmhm.2018.05.017
  5. M. Kurtinaitiene, A. Zieliene, L. Tamasauskaite-Tamasiunaite, A. Selskis and A. Jagminas, 2013 : Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride, Advances in Materials Science and Engineering, 2013, pp.1-7.
  6. A. F. Lisovskii, 2000 : Cemented Carbides Alloyed with Ruthenium, Osmium, and Rhenium, Powder Metallurgy and Metal Ceramics, 39, pp.9-10.
  7. S. Luyckx, 2002 : High temperature hardness of WC-Co-Ru, Journal of Materials Science Letters, 21, pp.1681-1682. https://doi.org/10.1023/A:1020828910540
  8. J. H. Potgieter, P. Olubambi and S. S. Potgieter-Vermaak, 2014 : The Corrosion Behaviour of WC-Co-Ru Alloys in Aggressive Chloride Media, International Journal of Electrochemistry, 2014, pp.1-11.
  9. T. L. Shing, S. Luyckx, I. T. Northrop and I. Wol, 2001 : The e?ect of ruthenium additions on the hardness, toughness and grain size of WC-Co, International Journal of Refractory Metals & Hard Materials 19, pp.41-44. https://doi.org/10.1016/S0263-4368(00)00048-2
  10. M. J. I, M. A and C. S. C, 2003 : Leaching of synthetic scheelite by hydrochloric acid without the formation of tungstic acid, Hydrometallurgy, 70, 13pp.1-141. https://doi.org/10.1016/S0304-386X(03)00053-7
  11. J. I. Martins, 2013 : Leaching Systems of Wolframite and Scheelite: A Thermodynamic Approach, Mineral Processing and Extractive Metallurgy Review, 35, pp.23-43.
  12. J. P. Martins, 1996 : Kinetics of soda ash leaching of low-grade scheelite concentrates, Hydrometallurgy, 42, pp.221-236. https://doi.org/10.1016/0304-386X(95)00099-3
  13. Z. Zhongwei, L. Jiangtao, W. Shibo, L. Honggui, L. Maosheng, S. Peimei and L. Yunjiao, 2011 : Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process, Hydrometallurgy, 108, pp.152-156. https://doi.org/10.1016/j.hydromet.2011.03.004
  14. J. Jeong, J.-C. Lee, S.-W. Park and K.-S. Kang, 2012 : Trend on the Recycling Technologies for the used Tungsten Carbide(WC) by the Patent and Paper Analysis, J. of Korean Inst. of Resources Recycling, 21.
  15. D. Mishra, S. Sinha, K. K. Sahu, A. Agrawal and R. Kumar, 2016 : Recycling of Secondary Tungsten Resources, Transactions of the Indian Institute of Metals, 70, pp.479-485.
  16. A. Shemi, A. Magumisea, S. Ndlovua and N. Sacks, 2018 : Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Minerals Engineering, 122, pp.195-205. https://doi.org/10.1016/j.mineng.2018.03.036
  17. J. Lee, S. Kim and B. Kim, 2017 : A New Recycling Process for Tungsten Carbide Soft Scrap That Employs a Mechanochemical Reaction with Sodium Hydroxide, Metals, 7, pp.230-239. https://doi.org/10.3390/met7070230
  18. Z. Wen-juan, Y. Jin-hong, Z. Zhong-wei, W. Wen-qiang and L. Jiang-tao, 2016 : Coordination leaching of tungsten from scheelite concentrate with phosphorus in nitric acid, J. Cent. South Univ., 23, pp.1312-1317. https://doi.org/10.1007/s11771-016-3181-2
  19. J. I. Martins, 2003 : Leaching of Synthetic Scheelite by Nitric Acid without the Formation of Tungstic Acid, Ind. Eng. Chem. Res.
  20. S. Gurmen, 2005 : Recovery of Nano-Sized Cobalt Powder from Cemented Carbide Scrap, Turkish J. Eng. Env. Sci, 29, pp.343-350.
  21. L. J. chun, K. E. young, K. J. Hye, K. W. Baek, K. ByungSoo and P. B. D, 2011 : Recycling of WC-Co hardmetal sludge by a new hydrometallurgical route, International Journal of Refractory Metals and Hard Materials, 29, pp.365-371. https://doi.org/10.1016/j.ijrmhm.2011.01.003
  22. T. Makino, S. Nagai, F. Iskandar, K. Okuyama and T. Ogi, 2018 : Recovery and Recycling of Tungsten by Alkaline Leaching of Scrap and Charged Amino Group Assisted Precipitation, ACS Sustainable Chem, 6, pp.4246-4252. https://doi.org/10.1021/acssuschemeng.7b04689

Cited by

  1. Effects of Ferrous Sulfate Addition on the Selective Flotation of Scheelite over Calcite and Fluorite vol.10, pp.10, 2018, https://doi.org/10.3390/min10100864