DOI QR코드

DOI QR Code

A Study of Detection Properties of Piezoresistive CNT/PDMS Devices with Porous Structure

다공성 구조를 가진 압저항 CNT/PDMS 소자의 감지특성 연구

  • Wonjun Lee (Department of Automotive Engineering, Seoul National University of Science and Technology) ;
  • Sang Hoon Lee (Department of Automotive Engineering, Seoul National University of Science and Technology)
  • 이원준 (서울과학기술대학교 자동차공학과) ;
  • 이상훈 (서울과학기술대학교 자동차공학과)
  • Received : 2024.05.02
  • Accepted : 2024.05.17
  • Published : 2024.05.31

Abstract

In this study, we investigated the detection properties of piezoresistive carbon nanotubes/polydimethylsiloxane (CNT/PDMS) devices with porous structures under applied pressure. The device, having dimensions of 10 mm × 10 mm × 5 mm, was fabricated with a porosity of 74.5%. To fabricate piezoresistive CNT/PDMS devices, CNTs were added using two different methods. In the first method, the CNTs were mixed with PDMS before the fabrication of the porous structure, while in the second, the CNTs were coated after the fabrication of the porous structure. Various detection properties of the fabricated devices were examined at different applied pressures. The CNT-coated device exhibited stable outputs with lesser variation than the CNT-mixed device. Moreover, the CNT-coated device exhibited improved reaction properties. The response time of the CNT-coated device was 1 min, which was approximately about 20 times faster than that of the CNT-mixed device. Considering these properties, CNT-coated devices are more suitable for sensing devices. To verify the CNT-coated device as a real sensor, it was applied to the gripping sensor system. A multichannel sensor system was used to measure the pressure distribution of the gripping sensor system. Under various gripping conditions, this system successfully measured the distributed pressures and exhibited stable dynamic responses.

Keywords

References

  1. V. Suresh and B. R. Kumar, "Design of piezoresistive pressure sensor for enhancing stress of MEMS cantilever", Measur. Sens., Vol. 25, pp. 100637(1)-100637(5), 2023.
  2. A. Dimassi, M. G. V. Gleason, M. Hubner, A. S. Herrmann, and W. Lang, "Using piezoresistive pressure sensors for resin flow monitoring in wind turbine blades", Mater. Today Proc., Vol. 34, pp. 140-148, 2021.
  3. Q. Meng, J. Wang, D. Chen, J. Chen, B. Xie, and Y. Lu, "A piezoresistive pressure sensor with centralized piezoresistors and a diamond-shape composite diaphragm", Sens. Actuators A Phys., Vol. 369, p. 115134, 2024.
  4. D. K. Choi and S. H. Lee, "Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection", J. Sens. Sci. Technol., Vol. 20, No. 6, pp. 393-399, 2011. https://doi.org/10.5369/JSST.2011.20.6.393
  5. Y. H. Wang, C. Y. Lee, and C. M. Chiang, "A MEMS-based air flow sensor with a free-standing micro-cantilever structure", Sensors, Vol. 7, No. 10, pp. 2389-2401, 2007. https://doi.org/10.3390/s7102389
  6. Q. Zhang, W. Ruan, H. Wang, Y. Zhou, Z. Wang, and L. Liu, "A self-bended piezoresistive microcantilever flow sensor for low flow rate measurement", Sens. Actuators A, Vol. 158, No. 2, pp. 273-279, 2010. https://doi.org/10.1016/j.sna.2010.02.002
  7. R. Mukhiya, M. Santosh, A. Sharma, S. S. Kumar, S. C. Bose, R. Gopal, and B. D. Pant, "Fabrication and characterization of a bulk micromachined polysilicon piezoresistive accelerometer", Mater. Today Proc., Vol. 48, pp. 619-621, 2021.
  8. J. C. Yang, J.-O. Kim, J. Oh, S. Y. Kwon, J. Y. Sim, D. W. Kim, H. B. Choi, and S. Park, "Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature", ACS Appl. Mater. Interface, Vol. 11, No. 21, pp. 19472-19480, 2019. https://doi.org/10.1021/acsami.9b03261
  9. K.-H. Ha, W. Zhang, H. Jang, S. Kang, L. Wang, P. Tan, H. Hwang, and N. Lu, "Highly Sensitive Capacitive Pressure Sensors over a Wide Pressure Range Enabled by the Hybrid Responses of a Highly Porous Nanocomposite", Adv. Mater., Vol. 33, No. 48, p. 2103320, 2021.
  10. Y. Choi, M. Gwak, and D. Lee, "Polymeric cantilever integrated with PDMS/graphene composite strain sensor", Rev. Sci. Instrum., Vol. 87, No. 10, p. 105004, 2016.
  11. K. Liu, C. Yang, L. Song, Y. Wang, Q. Wei, Alamusi, Q. Deng, and N. Hu, "Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite", Composites Compos. Sci. Technol., Vol. 218, p. 109148, 2022.
  12. C. Jiang, R. Lv, Y. Zou, and H. Peng, "Flexible pressure sensor with wide pressure range based on 3D microporous PDMS/MWCNTs for human motion detection", Microelectron. Eng., Vol. 283, p. 112105, 2024.
  13. M. Abshirini, M. C. Saha, M. C. Altan, and Y. Liu, "3D Printed Flexible Microscaled Porous Conductive Polymer Nanocomposites for Piezoresistive Sensing Applications", Adv. Mater. Technol., Vol. 7, No. 9, p. 2101555, 2022.
  14. B. Herren, V. Webster, E. Davidson, M. C. Saha, M. C. Altan, and Y. Liu, "PDMS Sponges with Embedded Carbon Nanotubes as Piezoresistive Sensors for Human Motion Detection", Nanomaterials, Vol. 11, No. 7, p. 1740, 2021.
  15. S. He, J. Wu, B. Su, S. Liu, and Y. Wang, "Design of PDMS/CNT flexible pressure sensor based on double structure with the regulation of electrical properties", Compos. Sci. Technol., Vol. 242, p. 110166, 2023.
  16. R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia, A. Yang, S. Li, and X. Xiao, "Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches", Sens. Actuators A Phys., Vol. 321, pp. 112425(1)-112425(39), 2021.
  17. M. Abshirini, P. Marashizadeh, M. C. Saha, M. C. Altan, and Y. Liu, "Three-Dimensional Printed Highly Porous and Flexible Conductive Polymer Nanocomposites with DualScale Porosity and Piezoresistive Sensing Functions", ACS Appl. Mater. Interfaces, Vol. 15, No. 11, pp. 14810-14825, 2023.
  18. R. Ramalingame, Z. Hu, C. Gerlach, D. Rajendran, T. Zubkova, R. Baumann, and O. Kanoun, "Flexible piezoresistive sensor matrix based on a carbon nanotube PDMS composite for dynamic pressure distribution measurement", J. Sens. Sens. Syst., Vol. 8, No. 1, pp. 1-7, 2019. https://doi.org/10.5194/jsss-8-1-2019
  19. D. Joo, M. Kang, S. Park, S. Yu, and W. Park, "Fabrication method of flexible strain sensors with CNTs and solvents", Sens. Actuators A Phys., Vol. 345, p. 113775, 2022.
  20. M.-K. Kim, M.-S. Kim, H.-B. Kwon, S.-E. Jo, and Y.-J. Kim, "Wearable triboelectric nanogenerator using a plasmaetched PDMS-CNT composite for a physical activity sensor", RSC Adv., Vol. 7, No. 76, pp. 48368-48373, 2017. https://doi.org/10.1039/C7RA07623A
  21. S. J. Lim, H. S. Lim, Y. Joo, and D. Y. Jeon, "Impact of MWCNT concentration on the piezo-impedance response of porous MWCNT/PDMS composites", Sens. Actuators A Phys., Vol. 315, p. 112332, 2020.
  22. R. Iglio, S. Mariani, V. Robbiano, L. Strambini, and G. Barillaro, "Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range", ACS Appl. Mater. Interfaces, Vol. 10, No. 16, pp. 13877-13885, 2018. https://doi.org/10.1021/acsami.8b02322
  23. T. R. Michel, M. J. Capasso, M. E. Cavusoglu, J. Decker, D. Zeppilli, C. Zhu, S. Bakrania, J. A. Kadlowec, and W. Xue, "Evaluation of porous polydimethylsiloxane/carbon nanotubes (PDMS/CNTs) nanocomposites as piezoresistive sensor materials", Microsyst. Technol., Vol. 26, No. 4, pp. 1101-1112, 2019.
  24. Y. J. Yang, M. Y. Cheng, S. C. Shih, X. H. Huang, C. M. Tsao, F. Y. Chang, and K. C. Fan, "A 32 × 32 temperature and tactile sensing array using PI-copper films", Int. J. Adv. Manuf. Technol., Vol. 46, pp. 945-956, 2010. https://doi.org/10.1007/s00170-009-1940-z
  25. R. Ramalingame, A. Lakshmanan, F. Muller, U. Thomas, and O. Kanoun, "Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and PDMS polymer nanocomposite", J. Sens. Sens. Syst., Vol. 8, No. 1, pp. 87-94, 2019. https://doi.org/10.5194/jsss-8-87-2019
  26. Z. Zhang, X. Gui, Q. Hu, L. Yang, R. Yang, B. Huang, B. Yang, and Z. Tang, "Highly Sensitive Capacitive Pressure Sensor Based on a Micropyramid Array for Health and Motion Monitoring", Adv. Electron. Mater., Vol. 7, No. 7, p. 2100174, 2021.
  27. J. Xu, H. Li, Y. Yin, X. Li, J. Cao, H. Feng, W. Bao, H. Tan, F. Xiao, and G. Zhu, "High sensitivity and broad linearity range pressure sensor based on hierarchical in-situ filling porous structure", Npj Flex. Electron., Vol. 6, No. 1, pp. 62(1)-62(12), 2022. https://doi.org/10.1038/s41528-022-00133-3
  28. H.-W. Oh, S.-W. Baek, and J.-Y. Kwon, "A Study on Mpattern Abnormal Conductivity of CNT/PDMS Piezoresistance Sensor", J. Kor. Inst. Commun. Inform. Sci., Vol. 43, No. 10, pp. 1711-1717, 2018.
  29. M. Cutroneo, V. Havranek, V. Semian, A. Torrisi, A. Mackova, P. Malinsky, L. Silipigni, P. Slepicka, D. Fajstavr, and L. Torrisi, "Porous polydimethylsiloxane flled with graphene-based material for biomedicine", J. Porous Mater., Vol. 28, pp. 1481-1491, 2021. https://doi.org/10.1007/s10934-021-01095-z
  30. https://en.wikipedia.org/wiki/Sucrose (retrieved on May. 16, 2024).