• Title/Summary/Keyword: Detection property

Search Result 471, Processing Time 0.028 seconds

Performance Analysis of Trellis Detection in the TFM System (TFM 방식에서 Trellis 검파의 성능 분석)

  • 정의성;조형래;홍대식;강창언
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.1-9
    • /
    • 1992
  • In this thesis, the trellis detection scheme is proposed to improve the error performance of the noncoherent detection in the TFM system. Trellis detection takes advantage of the trellis property of TFM-encoded signals. The trellis property is created by giving correlations among adjacent TFM-encoded signals at the transmitter. The performance of the trellis detection scheme is analyzed by means of the Bernoulli trials with the average symbol error probability, and is compared to that of the bit-by-bit detection scheme. As a result,when the SNR is below 20 dB in the Rayleigh fading and AWGN channel, the trellis detection is inferior to the bit-by-bit detections. But when SNR is above 20 dB, the trellis detection is superior to the bit-by-bit detection, and its performance enhancement is better as the SNR increases.

  • PDF

A Video Smoke Detection Algorithm Based on Cascade Classification and Deep Learning

  • Nguyen, Manh Dung;Kim, Dongkeun;Ro, Soonghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6018-6033
    • /
    • 2018
  • Fires are a common cause of catastrophic personal injuries and devastating property damage. Every year, many fires occur and threaten human lives and property around the world. Providing early important sign for early fire detection, and therefore the detection of smoke is always the first step in fire-alarm systems. In this paper we propose an automatic smoke detection system built on camera surveillance and image processing technologies. The key features used in our algorithm are to detect and track smoke as moving objects and distinguish smoke from non-smoke objects using a convolutional neural network (CNN) model for cascade classification. The results of our experiment, in comparison with those of some earlier studies, show that the proposed algorithm is very effective not only in detecting smoke, but also in reducing false positives.

Automatic Face Recognition Using Neural Network (신경회로망에 기초한 자동얼굴인식)

  • 김재철;이민중;김현식;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.417-417
    • /
    • 2000
  • This paper proposes a face detection and recognition method that combines the template matching method and the eigenface method with the neural network. In the face extraction step, the skin color information is used. Therefore, the search region is reduced. The global property of the face is achieved by the eigenface method. Face recognition is performed by a neural network that can learn the face property.

  • PDF

Circle Detection Using Its Maximal Symmetry Property

  • Koo, Ja Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • Circle detection has long been studied as one of fundamental image processing applications. It is used in divers areas including industrial inspection, medial image analysis, radio astronomy data analysis, and other object recognition applications. The most widely used class of circle detection techniques is the circle Hough transform and its variants. Management of 3 dimensional parameter histogram used in these methods brings about spatial and temporal overheads, and a lot of studies have dealt the problem. This paper proposes a robust circle detection method using maximal symmetry property of circle. The basic idea is that if perpendicular bisectors of pairs of edges are accumulated in image space, center of circle is determined to be the location of highest accumulation. However, directly implementing the idea in image space requires a lot of calculations. The method of this paper reduces the number of calculations by mapping the perpendicular bisectors into parameter space, selecting small number of parameters, and mapping them inversely into image space. Test on 22 images shows the calculations of the proposed method is 0.056% calculations of the basic idea. The test images include simple circles, multiple circles with various sizes, concentric circles, and partially occluded circles. The proposed method detected circles in various situations successfully.

A detection scheme of input estimation filter

  • Lee, Hungu;Tahk, Minjea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.496-499
    • /
    • 1995
  • In this paper, a new detection scheme, the detectable maneuver set (DMS) scheme, is proposed by incorporating the trade-off property between target maneuver magnitude and detection time delay. With this new detection scheme, small maneuvers can be effectively detected without enlarging window size. Simulation results show that the proposed DMS scheme gives better tracking performance.

  • PDF

A Study on Edge Detection for Images Corrupted by AWGN using Modified Weighted Vector (AWGN에 훼손된 영상에서 변형된 가중치 벡터를 이용한 에지검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1518-1523
    • /
    • 2012
  • Due to development of visual media in various industrial sectors, the importance of image processing is increasing. Among the various image processing areas, edge detection is utilized widely for various fields such as object recognition, object segmentation, the medical and other industries. Edge includes the critical factors of images like size, direction and location. Then conventional methods such as Sobel, Prewitt, Roberts and Laplacian are proposed to detect edge. However, edge detection property of these methods is declined when they are applied to the image which corrupted by AWGN(Additive White Gaussian Noise). Therefore, an algorithm using modified weighted filter is proposed in this paper and our method has excellent property on edge detection.

Electrochemical Detection of Hydrogen Peroxide based on Viologen Monolayers (Viologen 박막을 이용한 과산화수소의 전기화학적 검출 특성)

  • Choi, Won-Suk;Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2006-2010
    • /
    • 2008
  • In this paper, we fabricated a biosensor for detecting hydrogen peroxide and investigated the sensing property. We prepared a viologen and hemoglobin modified gold electrode using self-assembly and layer by layer method. The electrochemical property of the viologen derivative was characterized in 0.1 M $NaClO_4$ electrolyte solution by cyclic voltammetry. The modified electrode showed reversible electrochemical properties and high stability. From the results, the viologen can act as a charge transfer mediator for access to the electrode surface. The catalytic characteristics of the designed sensor proved that hemoglobin has been kept in its natural structure and can retain its biological activity. The designed biosensor showed a fast amperometric response, excellent linearity and low detection limit. In addition, it had high sensitivity, good reproducibility and stability.

Flame Dection Algorithm with Motion Vector (모션 벡터를 이용한 화염 검출 알고리즘)

  • Park, Jang-Sik;Bae, Jong-Gab;Choi, Soo-Young
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.135-138
    • /
    • 2008
  • Many Victims and property damage are caused in fires. In this paper, an flame detection algorithm is proposed to early alarm fires. The proposed flame detection algorithm is based on 2-stage decision strategy of video processing. The first decision is to check with color distribution of input vidoe. In the second, the candidated region is settled as fire region with activity. As a result of simulation, it is shown that the proposed algorithm is useful for fire recognition.

  • PDF

Failure Detection Using Adaptive Predictor (적응예측기를 이용한 고장파악방법)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.210-217
    • /
    • 1990
  • For the failure detection of dynamic systems, processing the residuals from the observer of the estimator is the most general method. A failure detection method which use an adaptive predictor to separate the effect of sensor failure from the additive noise in the residuals of a Kalman filter that is employed as an estimator of a dynamic system is addressed here. In the method, the property of the residuals of an optimal Kalman estimator is exploited. The simulation results of this method shows that the proposed method is superior to the sequential probability ratio test for a small failure magnitude.

  • PDF

Comparison of Detection Probability for Conventional and Time-Reversal (TR) Radar Systems

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2012
  • We compare the detection probabilities of the time-reversal(TR) detection system and the conventional radar system. The target is assumed to be hidden inside a random medium such as a forest. We propose a TR detection system based on the SAR(Synthetic Aperture Radar) algorithm. Unlike the conventional SAR images, the proposed TR-SAR system has an interesting property. Specifically, the target-related signal components due to the time-reversal refocusing characteristics, as well as some of clutter-related signal components are concentrated at the time-reversal reference point. The remaining clutter-related signal components are scattered around that reference point. In this paper, we model the random media as a collection of point scatterers to avoid unnecessary complexities. We calculate the detection probability of the TR radar system based on the proposed simple random media model.