DOI QR코드

DOI QR Code

Paper-based Electrochemical Sensor Using a Self-operated Paper Pump

자발 구동형 종이 펌프를 이용한 종이 전기화학 센서

  • Si Hiep Hua (Department of Applied Chemistry, Hanyang University) ;
  • Chikwan Kim (Department of Applied Chemistry, Hanyang University) ;
  • Duc Cuong Nguyen (Department of Applied Chemistry, Hanyang University) ;
  • Yong Shin Kim (Department of Applied Chemistry, Hanyang University)
  • ;
  • 김치관 (한양대학교 응용화학과) ;
  • ;
  • 김용신 (한양대학교 응용화학과)
  • Received : 2024.04.18
  • Accepted : 2024.05.02
  • Published : 2024.05.31

Abstract

We developed a self-operated paper pump that can maintain a nearly constant flow rate of an aqueous solution along a paper strip channel in paper-based analytical devices (PADs). The quasi-stationary flow rate was controlled by increasing the crosssectional channel area (capillary force) using a fan-shaped absorption pad coupled with a paper strip channel. The flow rate is regulated by varying the fan angle of the circular absorbing pad. Furthermore, the flow rate can be increased by furnishing a hollow cavity at the center of a conventional paper strip channel. The rate was regulated by varying the length of the hollow paper channel in the flow rate range of 5.1-26.4 mm/min. As a preliminary work, a paper-pump-coupled PAD was fabricated, and its CV detection capability was evaluated for the redox reaction of Fe(CN)6+4/+3. The combination of a paper pump with a PAD resulted in an ideal CV curve with a higher limiting current and faster response time. These results are interpreted well by the Levich equation, which suggests that the paper pump is a very useful component in paper-based sensors.

Keywords

Acknowledgement

본 연구는 경기도의 경기도지역협력연구센터(GRRC) 사업의 일환으로 수행하였음. [(GRRC한양2020-B04), 안전성 확보를 위한 수소 센싱 기술 개발]

References

  1. P. Watts and S. J. Haswell, "The application of micro reactors for organic synthesis", Chem. Soc. Rev., Vol. 34, No. 3, pp. 235-246, 2005. https://doi.org/10.1039/b313866f
  2. J. B. Wacker, I. Lignos, V. K. Parashar, and M. A. M. Gijs, "Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets", Lab. Chip, Vol. 12, No. 17, pp. 3111-3116, 2012. https://doi.org/10.1039/c2lc40300e
  3. T. J. Park, S. Y. Lee, N. S. Heo, and T. S. Seo, "In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli", Angew. Chem. Int. Ed., Vol. 49, No. 39, pp. 7019-7024, 2010. https://doi.org/10.1002/anie.201001524
  4. G. M. Whitesides, "The origins and the future of microfluidics", Nature, Vol. 442, No. 7101, pp. 368-373, 2006. https://doi.org/10.1038/nature05058
  5. W. Zhao and A. V. D. Berg, "Lab on paper", Lap. Chip, Vol. 8, No. 12, pp. 1988-1991, 2008. https://doi.org/10.1039/b814043j
  6. X. Li, J. Tian, T. Nguyen, and W. Shen, "Paper-based microfluidic devices by plasma treatment", Anal. Chem., Vol. 80, No. 23, pp. 9131-9134, 2008. https://doi.org/10.1021/ac801729t
  7. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low-volume, portable bioassays", Angew. Chem. Int. Ed., Vol. 46, No. 8, pp. 1318-1320, 2007. https://doi.org/10.1002/anie.200603817
  8. A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, "FLASH: a rapid method for prototyping paper-based microfluidic devices", Lab. Chip, Vol. 8, No. 12, pp. 2146-2150, 2008. https://doi.org/10.1039/b811135a
  9. E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics", Anal. Chem., Vol. 81, No. 16, pp. 7091-7095, 2009. https://doi.org/10.1021/ac901071p
  10. A. K. Ellerbee, S. T. Phillips, A. C. Siegel, K. A. Mirica, A. W. Martinez, P. Striehl, N. Jain, M. Prentiss, and G. M. Whitesides, "Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper", Anal. Chem., Vol. 81, No. 20, pp. 8447-8452, 2009. https://doi.org/10.1021/ac901307q
  11. J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge, and C. S. Henry, "Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens", Anal. Chem., Vol. 84, No. 6, pp. 2900-2907, 2012. https://doi.org/10.1021/ac203466y
  12. A. Apilux, W. Siangproh, N. Praphairaksit, and O. Chailapakul, "Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates", Talanta, Vol. 97, No. 1, pp. 388-394, 2012. https://doi.org/10.1016/j.talanta.2012.04.050
  13. W. Dungchai, O. Chailapakul, and C. S. Henry, "Electrochemical detection for paper-based microfluidics", Anal. Chem., Vol. 81, No. 14, pp. 5821-5826, 2009. https://doi.org/10.1021/ac9007573
  14. Z. Nie, F. Deiss, X. Liu, O. Akbulut, and G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers", Lap. Chip, Vol. 10, No. 22, pp. 3163-3169, 2010. https://doi.org/10.1039/c0lc00237b
  15. Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, and G. M. Whitesides, "Electrochemical sensing in paper-based microfluidic devices", Lap. Chip, Vol. 10, No. 4, pp. 477-483, 2010. https://doi.org/10.1039/B917150A
  16. R. F. Carvalhal, M. S. Kfouri, M. H. O. Piazetta, A. L. Gobbi, and L. T. Kubota, "Electrochemical detection in a paper-based separation device", Anal. Chem., Vol. 82, No. 3, pp. 1162-1165, 2010. https://doi.org/10.1021/ac902647r
  17. J. Lankelma, Z. Nie, E. Carrilho, and G. M. Whitesides, "Paper-based analytical device for electrochemical flowinjection analysis of glucose in urine", Anal. Chem., Vol. 84, No. 9, pp. 4147-4152, 2012. https://doi.org/10.1021/ac3003648
  18. M. Santhiago, J. B. Wydallis, L. T. Kubota, and C. S. Henry, "Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices", Anal. Chem., Vol. 85, No. 10, pp. 5233-5239, 2013. https://doi.org/10.1021/ac400728y
  19. N. Dossi, R. Toniolo, E. Piccin, S. Susmel, A. Pizzariello, and G. Bontempelli, "Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility", Electroanalysis, Vol. 25, No. 11, pp. 2515-2522, 2013. https://doi.org/10.1002/elan.201300374
  20. S. E. Fosdick, M. J. Anderson, C. Renault, P. R. DeGregory, J. A. Loussaert, and R. M. Crooks, "Wire, mesh, and fiber electrodes for paper-based electroanalytical devices", Anal. Chem., Vol. 86, No. 7, pp. 3659-3666, 2014. https://doi.org/10.1021/ac5004294
  21. E. W. Washburn, "The dynamics of capillary flow", Phys. Rev., Vol. 17, No. 3, pp. 273-283, 1921. https://doi.org/10.1103/PhysRev.17.273
  22. S. Mendez, E. M. Fenton, G. R. Gallegos, D. N. Petsev, S. S. Sibbett, H. A. Stone, Y. Zhang, and G. P. Lopez, "Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments", Langmuir, Vol. 26, No. 2, pp. 1380-1385, 2010. https://doi.org/10.1021/la902470b
  23. C. Renault, X. Li, S. E. Fosdick, and R. M. Crooks, "Hollow-channel paper analytical devices", Anal. Chem., Vol. 85, No. 16, pp. 7976-7979, 2013. https://doi.org/10.1021/ac401786h
  24. C. Renault, M. J. Anderson, and R. M. Crooks, "Electrochemistry in hollow-channel paper analytical devices", J. Am. Chem. Soc., Vol. 136, No. 12, pp. 4616-4623, 2014. https://doi.org/10.1021/ja4118544
  25. S. Yao and M. Wang, "Electrochemical sensor for dissolved carbon dioxide measurement", J. Electrochem. Soc., Vol. 149, No. 1, pp. H28-H32, 2002. https://doi.org/10.1149/1.1426404
  26. C. Amatore, N. Da Mota, C. Sella, and L. Thouin, "Theory and experiments of transport at channel microband electrodes under laminar flow. 1. steady-state regimes at a single electrode", Anal. Chem., Vol. 79, No. 22, pp. 8502-8510, 2007. https://doi.org/10.1021/ac070971y