DOI QR코드

DOI QR Code

Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum

  • Doo-Ho Choi (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jae-Gu Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kang-Hyo Lee (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • An Gi-Hong (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • Received : 2023.06.21
  • Accepted : 2023.09.06
  • Published : 2023.10.31

Abstract

Tricholoma matsutake has been the most valuable ectomycorrhizal fungi in Asia because of its unique flavor and taste. However, due to the difficulty of artificial cultivation, the cultivation of T. matsutake has relied on natural growth in forests. To cultivate the T. matsutake artificially, microorganisms in fairy rings were introduced. In this study, we isolated 30 fungal species of microfungi from the soil of fairy rings. Among them, one single fungal strain showed a promoting effect on the growth of T. matsutake. The growth effect was confirmed by measuring the growth area of T. matsutake and enzyme activities including a-amylase, cellulase, and b-glucosidase. In comparison with control, microfungal metabolite increased the growth area of T. matsutake by 213% and the enzyme activity of T. matsutake by 110-200%. The isolated fungal strain was identified as Penicillium citreonigrum by BLAST on the NCBI database. The Discovery of this microfungal strain is expected to contribute to artificial cultivation of T. matsutake.

Keywords

Acknowledgement

This study was conducted in the postdoctoral research program support project as part of the results conducted by the Rural Development Administration (PJ014766022023).

References

  1. Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367(6480)eaba1223. doi:10.1126/science.aba1223.
  2. Bonfante P. 2001. At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. Fungal Associations. In B. Hock. Berlin, Heidelberg, Springer Berlin Heidelberg: 45-61.
  3. Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol. 2007;176(1):22-36. doi:10.1111/j.1469-8137.2007.02191.x.
  4. Kiers ET, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333(6044):880-882. doi:10.1126/science.1208473.
  5. You YH, Yoon HJ, Woo JR, et al. Diversity of endophytic fungi isolated from the rootlet of Pinus densiflora colonized by Tricholoma matsutake. Korean J Mycol. 2011;39(3):223-226. doi:10.4489/KJM.2010.39.3.223.
  6. Kluber LA, Smith JE, Myrold DD. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem. 2011;43(5):1042-1050. doi:10.1016/j.soilbio.2011.01.022.
  7. Li Q, Chen C, Penttinen P, et al. Microbial diversity associated with Tricholoma matsutake fruiting bodies. Microbiol. 2016;85(5):531-539. doi:10.1134/S0026261716050106.
  8. Summerbell RC. From lamarckian fertilizers to fungal castles: recapturing the pre-1985 literature on endophytic and saprotrophic fungi associated with ectomycorrhizal root systems. Stud Mycol. 2005;53:191-256. doi:10.3114/sim.53.1.191.
  9. Voznyakovskaya YM, Ryzhkova A. Microflora accompanying mycorrhizas. Mycotrophy of woody plants: Academy of Sciences of the USSR. 1967:320-323.
  10. Amend A, Garbelotto M, Fang Z, et al. Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet. 2010;11(3):795-802. doi:10.1007/s10592-009-9894-0.
  11. Yamanaka T, Ota Y, Konno M, et al. The host ranges of conifer-associated Tricholoma matsutake, fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycol. 2014;106(3):397-406. doi:10.3852/13-197.
  12. Yamanaka T, Yamada A, Furukawa H. Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. Mycoscience. 2020;61(2):49-57. doi:10.1016/j.myc.2020.01.001.
  13. Ogawa M. Studies on the artificial reproduction of Tricholoma matsutake (S. Ito & Imai) Sing. III. Effects of growth promotion of natural products on the vegetative growth of T. matsutake. Trans Mycol Soc Jpn. 1976;17:492-498.
  14. Ka KH, Kim HS, Hur TC, et al. Analysis of environment and production of Tricholoma matsutake in matsutake-infected pine trees. Korean J Mycol. 2018;46:34-42.
  15. Kareki K, Kawakami Y. Artificial formation of shiros (fungus colony) by planting the pine saplings infected with Tricholoma matsutake (S. Ito & Imai) sing. Bulletin of the Hiroshima Prefectural Forest Experiment Station. 1985;20:13-23 (in Japanese).
  16. Murata H, Abe T, Ichida H, et al. Heavy-ion beam mutagenesis of the ectomycorrhizal agaricomycete Tricholoma matsutake that produces the prized mushroom "matsutake" in conifer forests. Mycorrhiza. 2018;28(2):171-177. doi:10.1007/s00572-017-0810-z.
  17. Murata H, Nakano S, Yamanaka T, et al. Conversion from mutualism to parasitism: a mutant of the ectomycorrhizal agaricomycete Tricholoma matsutake that induces stunting, wilting, and root degeneration in seedlings of its symbiotic partner, Pinus densiflora, in vitro. Botany. 2019;97(8):463-474. doi:10.1139/cjb-2019-0060.
  18. Oh SY, Kim M, Eimes JA, et al. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One. 2018;13(2):e0190948. doi:10.1371/journal.pone.0190948.
  19. Oh SY, Lim YW. Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom). J Microbiol. 2018;56(6):399-407. doi:10.1007/s12275-018-7491-y.
  20. Oh SY, Park MS, Lim YW. The influence of microfungi on the mycelial growth of ectomycorrhizal fungus Tricholoma matsutake. Microorganisms. 2019;7(6):169. doi:10.3390/microorganisms7060169.
  21. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241-6246. doi:10.1073/pnas.1117018109.
  22. Kim IY, Jung GR, Han SK, et al. Favorable condition for mycelial growth of Tricholoma matsutake. Korean J Mycol. 2005;33:22-29. https://doi.org/10.4489/KJM.2005.33.1.022
  23. Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: imageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529. doi:10.1186/s12859-017-1934-z.
  24. Bhanja T, Kumari A, Banerjee R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol. 2009;100(11):2861-2866. doi: 10.1016/j.biortech.2008.12.055.
  25. Ang S, Shaza EM, Adibah Y, et al. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 2013;48(9):1293-1302. doi:10.1016/j.procbio.2013.06.019.
  26. Salar RK, Purewal SS. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (Pennisetum glaucum) cultivar PUSA-415 using Aspergillus oryzae MTCC 3107. Biocatal Agric Biotechnol. 2016;8:221-227. doi:10.1016/j.bcab.2016.10.005.
  27. Visagie C, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78(1):343-371. doi: 10.1016/j.simyco.2014.09.001.
  28. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-4882. doi:10.1093/nar/25.24.4876.
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. doi:10.1093/molbev/msw054.
  30. Choi DH, You YH, Lee IS, et al. Penicillium ulleungdoense sp. nov. From Ulleung island in Korea. Mycobiology. 2020;49(1):46-53. doi:10.1080/12298093.2020.1852702.
  31. Kusuda M, Ueda M, Miyatake K, et al. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience. 2008;49(5):291-297. doi:10.1007/S10267-008-0423-7.
  32. Shiratori N, Kobayashi N, Tulayakul P, et al. Occurrence of Penicillium brocae and Penicillium citreonigrum, which produce a mutagenic metabolite and a mycotoxin citreoviridin, respectively, in selected commercially available rice grains in Thailand. Toxins. 2017;9(6):194. doi:10.3390/toxins9060194.
  33. Tang XX, Liu SZ, Yan X, et al. Two new cytotoxic compounds from a deep-sea Penicillium citreonigrum XT20-134. Mar Drugs. 2019;17(9):509. doi:10.3390/md17090509.
  34. Araujo VPB, Araujo TK, Sousa KMN, et al. A novel β-fructofuranosidase produced by Penicillium citreonigrum URM 4459: purification and biochemical features. Prep Biochem Biotechnol. 2023;53(8):906-913. doi:10.1080/10826068.2022.2158472.
  35. Nobre C, do Nascimento AKC, Silva SP, et al. Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol. 2019;282:464-474. doi: 10.1016/j.biortech.2019.03.053.
  36. Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44(22):3358-3393. doi:10.1002/anie.200460587.