Acknowledgement
This study was conducted in the postdoctoral research program support project as part of the results conducted by the Rural Development Administration (PJ014766022023).
References
- Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367(6480)eaba1223. doi:10.1126/science.aba1223.
- Bonfante P. 2001. At the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. Fungal Associations. In B. Hock. Berlin, Heidelberg, Springer Berlin Heidelberg: 45-61.
- Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol. 2007;176(1):22-36. doi:10.1111/j.1469-8137.2007.02191.x.
- Kiers ET, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333(6044):880-882. doi:10.1126/science.1208473.
- You YH, Yoon HJ, Woo JR, et al. Diversity of endophytic fungi isolated from the rootlet of Pinus densiflora colonized by Tricholoma matsutake. Korean J Mycol. 2011;39(3):223-226. doi:10.4489/KJM.2010.39.3.223.
- Kluber LA, Smith JE, Myrold DD. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil Biol Biochem. 2011;43(5):1042-1050. doi:10.1016/j.soilbio.2011.01.022.
- Li Q, Chen C, Penttinen P, et al. Microbial diversity associated with Tricholoma matsutake fruiting bodies. Microbiol. 2016;85(5):531-539. doi:10.1134/S0026261716050106.
- Summerbell RC. From lamarckian fertilizers to fungal castles: recapturing the pre-1985 literature on endophytic and saprotrophic fungi associated with ectomycorrhizal root systems. Stud Mycol. 2005;53:191-256. doi:10.3114/sim.53.1.191.
- Voznyakovskaya YM, Ryzhkova A. Microflora accompanying mycorrhizas. Mycotrophy of woody plants: Academy of Sciences of the USSR. 1967:320-323.
- Amend A, Garbelotto M, Fang Z, et al. Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet. 2010;11(3):795-802. doi:10.1007/s10592-009-9894-0.
- Yamanaka T, Ota Y, Konno M, et al. The host ranges of conifer-associated Tricholoma matsutake, fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycol. 2014;106(3):397-406. doi:10.3852/13-197.
- Yamanaka T, Yamada A, Furukawa H. Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. Mycoscience. 2020;61(2):49-57. doi:10.1016/j.myc.2020.01.001.
- Ogawa M. Studies on the artificial reproduction of Tricholoma matsutake (S. Ito & Imai) Sing. III. Effects of growth promotion of natural products on the vegetative growth of T. matsutake. Trans Mycol Soc Jpn. 1976;17:492-498.
- Ka KH, Kim HS, Hur TC, et al. Analysis of environment and production of Tricholoma matsutake in matsutake-infected pine trees. Korean J Mycol. 2018;46:34-42.
- Kareki K, Kawakami Y. Artificial formation of shiros (fungus colony) by planting the pine saplings infected with Tricholoma matsutake (S. Ito & Imai) sing. Bulletin of the Hiroshima Prefectural Forest Experiment Station. 1985;20:13-23 (in Japanese).
- Murata H, Abe T, Ichida H, et al. Heavy-ion beam mutagenesis of the ectomycorrhizal agaricomycete Tricholoma matsutake that produces the prized mushroom "matsutake" in conifer forests. Mycorrhiza. 2018;28(2):171-177. doi:10.1007/s00572-017-0810-z.
- Murata H, Nakano S, Yamanaka T, et al. Conversion from mutualism to parasitism: a mutant of the ectomycorrhizal agaricomycete Tricholoma matsutake that induces stunting, wilting, and root degeneration in seedlings of its symbiotic partner, Pinus densiflora, in vitro. Botany. 2019;97(8):463-474. doi:10.1139/cjb-2019-0060.
- Oh SY, Kim M, Eimes JA, et al. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One. 2018;13(2):e0190948. doi:10.1371/journal.pone.0190948.
- Oh SY, Lim YW. Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom). J Microbiol. 2018;56(6):399-407. doi:10.1007/s12275-018-7491-y.
- Oh SY, Park MS, Lim YW. The influence of microfungi on the mycelial growth of ectomycorrhizal fungus Tricholoma matsutake. Microorganisms. 2019;7(6):169. doi:10.3390/microorganisms7060169.
- Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241-6246. doi:10.1073/pnas.1117018109.
- Kim IY, Jung GR, Han SK, et al. Favorable condition for mycelial growth of Tricholoma matsutake. Korean J Mycol. 2005;33:22-29. https://doi.org/10.4489/KJM.2005.33.1.022
- Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: imageJ for the next generation of scientific image data. BMC Bioinformatics. 2017;18(1):529. doi:10.1186/s12859-017-1934-z.
- Bhanja T, Kumari A, Banerjee R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol. 2009;100(11):2861-2866. doi: 10.1016/j.biortech.2008.12.055.
- Ang S, Shaza EM, Adibah Y, et al. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 2013;48(9):1293-1302. doi:10.1016/j.procbio.2013.06.019.
- Salar RK, Purewal SS. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (Pennisetum glaucum) cultivar PUSA-415 using Aspergillus oryzae MTCC 3107. Biocatal Agric Biotechnol. 2016;8:221-227. doi:10.1016/j.bcab.2016.10.005.
- Visagie C, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78(1):343-371. doi: 10.1016/j.simyco.2014.09.001.
- Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-4882. doi:10.1093/nar/25.24.4876.
- Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. doi:10.1093/molbev/msw054.
- Choi DH, You YH, Lee IS, et al. Penicillium ulleungdoense sp. nov. From Ulleung island in Korea. Mycobiology. 2020;49(1):46-53. doi:10.1080/12298093.2020.1852702.
- Kusuda M, Ueda M, Miyatake K, et al. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience. 2008;49(5):291-297. doi:10.1007/S10267-008-0423-7.
- Shiratori N, Kobayashi N, Tulayakul P, et al. Occurrence of Penicillium brocae and Penicillium citreonigrum, which produce a mutagenic metabolite and a mycotoxin citreoviridin, respectively, in selected commercially available rice grains in Thailand. Toxins. 2017;9(6):194. doi:10.3390/toxins9060194.
- Tang XX, Liu SZ, Yan X, et al. Two new cytotoxic compounds from a deep-sea Penicillium citreonigrum XT20-134. Mar Drugs. 2019;17(9):509. doi:10.3390/md17090509.
- Araujo VPB, Araujo TK, Sousa KMN, et al. A novel β-fructofuranosidase produced by Penicillium citreonigrum URM 4459: purification and biochemical features. Prep Biochem Biotechnol. 2023;53(8):906-913. doi:10.1080/10826068.2022.2158472.
- Nobre C, do Nascimento AKC, Silva SP, et al. Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol. 2019;282:464-474. doi: 10.1016/j.biortech.2019.03.053.
- Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44(22):3358-3393. doi:10.1002/anie.200460587.