DOI QR코드

DOI QR Code

Vertiport Location Problem to Maximize Utilization Rate for Air Taxi

에어 택시 이용률 최대화를 위한 수직이착륙장 위치 결정 문제

  • 김광 (조선대학교 경영학부)
  • Received : 2023.08.01
  • Accepted : 2023.09.10
  • Published : 2023.10.30

Abstract

This paper deals with the operation of air taxis, which is one of the latest innovative technologies aimed at solving the issue of traffic congestion in cities. A key challenge for the successful introduction of the technology and efficient operation is a vertiport location problem. This paper employs a discrete choice model to calculate choice probabilities of transportation modes for each route, taking into account factors such as cost and travel time associated with different modes. Based on this probability, a mathematical formulation to maximize the utilization rate for air taxi is proposed. However, the proposed model is NP-hard, effective and efficient solution methodology is required. Compared to previous studies that simply proposed the optimization models, this study presents a solution methodology using the cross-entropy algorithm and confirms the effectiveness and efficiency of the algorith through numerical experiments. In addition to the academic excellence of the algorithm, it suggests that decision-making that considers actual data and air taxi utilization plans can increase the practial usability.

본 논문에서는 도시 내 교통 혼잡 문제를 해결하기 위한 새로운 혁신 기술 중 하나인 에어 택시 운영에 관한 연구를 다룬다. 성공적인 기술 도입과 합리적인 운영을 위해 초기에 고려해야 할 문제 중 하나인 수직이착륙장(vertiport) 위치 결정 문제를 다룬다. 교통수단 이용에 따른 비용과 이동시간을 고려하여 각 경로에서의 교통수단 예측 수요 확률을 이산 선택 모형을 활용하여 구하고, 이를 반영하여 에어 택시 이용률의 최대화를 목적으로 하는 수리적 모형을 제안한다. 본 수리적 모형은 NP-난해(NP-hard) 문제로, 위치 결정 문제를 해결하기 위한 효과적이면서 효율적인 문제 해결방법론이 필요하다. 단순히 최적화 모형을 제안한 기존 연구와 달리 본 연구에서는 교차-엔트로피 알고리즘(cross-entropy algorithm)을 활용한 문제 해결 방법론을 제안하고, 수치 실험을 통해 알고리즘의 효과성과 효율성을 확인한다. 문제 해결 방법론의 학술적 우수성 외에도, 실제 데이터 및 에어 택시 활용 계획을 고려한 의사결정의 제시는 실무적인 활용 가능성을 높일 수 있음을 시사한다.

Keywords

Acknowledgement

이 논문은 2023학년도 조선대학교 학술연구비의 지원을 받아 연구되었음.

References

  1. Cabo, M., & Possani, E. (2015). Considerations on applying cross entropy methods to the vehicle routing problem. International Journal of Combinatorial Optimization Problems and Informatics, 6(3), 22-33.
  2. Choi, J. H., & Park, Y. (2022). Exploring economic feasibility for airport shuttle service of urban air mobility (UAM). Transportation Research P art A: Policy and Practice, 162, 267-281. https://doi.org/10.1016/j.tra.2022.06.004
  3. Duvall, T., Green, A., Langstaff, M., & Miele, K. (2019). Air-mobility solutions: What they'll need to take off. McKinsey Capital Projects & Infrastructure.
  4. Fisher, M. L., Nemhauser, G. L., & Wolsey, L. A. (1978). An analysis of approximations for maximizing submodular set functions-II. Berlin, Heidelberg. Polyhedral combinatorics, pp. 73-87.
  5. Huang, L., Qu, H., & Zuo, L. (2018). Multi-type UAVs cooperative task allocation under resource constraints. IEEE Access, 6, 17841-17850. https://doi.org/10.1109/ACCESS.2018.2818733
  6. Kim, G. (2022). Multi agents-multi tasks assignment problem using hybrid cross-entropy algorithm. Journal of the Korea Industrial Information Systems Research, 27(4), 37-45. https://doi.org/10.9723/JKSIIS.2022.27.4.037
  7. Le Thi, H. A., Nguyen, D. M., & Dinh, T. P. (2012). Globally solving a nonlinear UAV task assignment problem by stochastic and deterministic optimization approaches. Optimization Letters, 6(2), 315-329. https://doi.org/10.1007/s11590-010-0259-x
  8. McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior.
  9. Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions-I. Mathematical programming, 14(1), 265-294. https://doi.org/10.1007/BF01588971
  10. Pishue, B. (2023). 2022 inrix global traffic scorecard. In Inrix.
  11. Rath, S., & Chow, J. Y. (2022). Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access. Journal of Air Transport Management, 105, 102294.
  12. Shin, H., Lee, T., & Lee, H. R. (2022). Skyport location problem for urban air mobility system. Computers & Operations Research, 138, 105611.
  13. Toro-Gonzalez, D., Cantillo, V., & Cantillo-Garcia, V. (2020). Factors influencing demand for public transport in Colombia. Research in Transportation Business & Management, 36, 100514.
  14. Wandelt, S., Dai, W., Zhang, J., Zhao, Q., & Sun, X. (2021). An efficient and scalable approach to hub location problems based on contraction. Computers & Industrial Engineering, 151, 106955.
  15. Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473-487. https://doi.org/10.1016/j.eng.2020.11.007
  16. Yedavalli, P., & Mooberry, J. (2019). An assessment of public perception of urban air mobility (UAM). Airbus UTM: Defining Future Skies, 2046738072-1580045281.
  17. Yun, Y.S. & Chuluunsukh, A. (2019). Green Supply Chain Network Model: Genetic Algorithm Approach. Journal of the Korea Industrial Information Systems Research, 24(3), 31-38. https://doi.org/10.9723/JKSIIS.2019.24.3.031
  18. Zhong Y.M & Chen, X. (2023). (Optimization of Zero-carbon Supply Chain Network by Redistribution of E-scooter Sharing. Journal of the Korea Industrial Information Systems Research, 28(3), 21-29. https://doi.org/10.9723/JKSIIS.2023.28.3.021