DOI QR코드

DOI QR Code

The Effect of Daily Minimum Temperature of the Period from Dormancy Breaking to First Bloom on Apple Phenology

휴면타파부터 개화개시까지의 일 최저온도가 사과 생물계절에 미치는 영향

  • Kyung-Bong Namkung (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Sung-Chul Yun (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University)
  • 남궁경봉 (선문대학교 제약생명공학과) ;
  • 윤성철 (선문대학교 제약생명공학과)
  • Received : 2023.08.28
  • Accepted : 2023.09.13
  • Published : 2023.09.30

Abstract

Accurate estimation of dormancy breaking and first bloom dates is crucial for effective fire blight control by disease model such as Maryblyt in apple orchards. The duration from dormancy breaking to first bloom in apple trees was influenced by daily minimum temperatures during the dormant period. The purpose of this study is to investigate the relationship between minimum temperatures during this period and the time taken for flowering to commence. Webcam data from eight apple orchards, equipped by the National Institute of Horticultural and Herbal Science, were observed from 2019 to 2023 to determine the dates of starting bloom (B1). Additionally, the dormancy breaking dates for these eight sites were estimated using an apple chill day model, with a value of -100.5 DD, based on collected weather data. Two regressions were performed to analyze the relationships: the first regression between the number of days under 0℃ (X1) and the time from calculated dormancy breaking to observed first bloom (Y), resulting in Y = 0.87 × X1 + 40.76 with R2 = 0.84. The second regression examined the starting date of breaking dormancy (X2) and the duration from dormancy breaking to observed first bloom (Y), resulting in Y = -1.07 × X2 + 143.62 with R2 = 0.92. These findings suggest that apple anti-chill days are significantly affected by minimum temperatures during the period from dormancy breaking to flowering, indicating their importance in fire blight control measures.

정확한 자발휴면 타파일 및 개화기간 추정은 사과 화상병의 효과적 방제를 위해 매우 중요하다. 자발휴면 타파일부터 개화 개시일까지 기간은 이 기간 동안의 일 최저기온에 의해 영향을 받았다. 본 연구는 이 기간의 일 최저기온이 사과 생육단계 중 개화기간에 미치는 영향을 조사함으로써 화상병 방제를 위한 병모델 구동이 목적이었다. 원예특작과학원에서 제공하는 우리나라 사과나무 재배지역을 대표하는 8개 과수원에서 2019년부터 2023년까지 웹캠으로 관측한 영상자료로부터 최초 개화 관측일을 얻었다. 또한 같은 과수원에서 자발휴면 타파일은 전년도 10월 1일부터 자동기상 측정 장비로부터 받은 기상자료를 활용하여 자발휴면 타파일은 -100.5 DD에 도달하는 날로 추정하였다. 본 연구에서 실시한 회귀분석은 자발휴면 타파일부터 개화 개시일까지의 기간(Y)을 종속변수로 이 기간 중 일 최저 기온이 0℃ 이하인 날(X1)이 며칠 인지를 독립변수로 하는 회귀식으로서 Y = 0.87 × X1 + 40.76, R2= 0.83의 결과로서 뚜렷한 양의 상관관계를 얻었다. 또한 같은 기간(Y)을 종속변수로 하고 자발휴면 타파일을 줄리안데이(X2)를 독립변수로 하는 회귀분석을 실시하여 Y = -1.07 × X2 + 143.62, R2=0.92의 결과로서 뚜렷한 부의 상관관계를 얻었다. 따라서 자발휴면 타파일부터 개화 개시일까지의 기간은 월동 중 최저기온에 영향을 받으며, 이것이 사과 화상병 감염에 중요한 개화기간 변동에 영향을 준다는 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구개발사업(과제번호: RS-2020-RD009731)의 지원에 의해 이루어진 것임.

References

  1. Ahn, M. I., and S. C. Yun, 2021: Application of the Maryblyt model for the infection of fire blight on apple trees at Chungju, Jecheon, and Eumsung during 2015-2020. Plant Pathology Journal 37, 543-554. https://doi.org/10.5423/PPJ.OA.07.2021.0120
  2. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126, 1-13. https://doi.org/10.1016/j.agrformet.2004.03.002
  3. Guo, L., J. Dai, M. Wang, J. Xu, and E. Luedeling, 2015: Responses of spring phenology in temperate zone trees to climate warming: a case study of apricot flowering in China. Agricultural and Forest Meteorology 201, 1-7. https://doi.org/10.1016/j.agrformet.2014.10.016
  4. Ham, H., K. J. Lee, S. J. Hong, H. G. Kong, M.-H. Lee, H.-R. Kim, and Y. H. Lee, 2020: Outbreak of fire blight of apple and pear and its characteristics in Korea in 2019. Research in Plant Disease 26, 239-249. (In Korean with English abstract) https://doi.org/10.5423/RPD.2020.26.4.239
  5. Kim, D. J., and J. H. Kim, 2018: An outlook of changes in the flowering dates and low temperature after flowering under the RCP8.5 projected climate condition. Korean Journal of Agricultural and Forest Meteorology 20, 313-320. (In Korean with English abstract)
  6. Kim, J. H., D. J. Kim, S. O. Kim, E. J. Yun, O. Ju, J. S. Park, and Y. S. Shin, 2019: Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring. Korean Journal of Agricultural and Forest Meteorology 21, 55-64. (In Korean with English abstract)
  7. Kim, J. H., E. J. Lee, and J. I. Yun, 2013: Prediction of blooming dates of spring flowers by using digital temperature forecasts and phenology model. Korean Journal of Agricultural and Forest Meteorology 15, 40-49. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.1.040
  8. Kim, J. H., E. J. Yun, D. J. Kim, D. K. Kang, B. H. Seo, and K. M. Shim, 2020: Evaluation of regional flowering phenological models in Niitaka pear by temperature patterns. Korean Journal of Agricultural and Forest Meteorology 22, 268-278. (In Korean with English abstract)
  9. Myung, I. S., J. Y. Lee, M. J. Yun, Y. H. Lee, Y. K. Lee, D. H. Park, and C. S. Oh, 2016: Fire blight of apple, caused by Erwinia amylovora, a new disease in Korea. Plant Disease 100, 1774.
  10. Namkung, K. B., and S. C. Yun, 2022a: A Maryblyt study to apply integrated control of fire blight of pears in Korea. Korean Journal of Agricultural and Forest Meteorology 24, 305-317. (In Korean with English abstract)
  11. Namkung, K. B., and S. C. Yun, 2022b: Validation of K-Maryblyt models for blossom blight control on apple and pear tree (Report No. I-13). 60th Annual Meeting & Fall International Conference, The Korean Society of Plant Pathology.
  12. Slack, S. M., and G. W. Sundin, 2017: News on ooze, the fire blight spreader. Fruit Quarterly 25, 9-12.
  13. Steiner, P. W. 1990: Predicting apple blossom infections by Erwinia amylovora using the Maryblyt model. Acta Horticulturae 273, 139-148. https://doi.org/10.17660/ActaHortic.1990.273.18
  14. Steiner, P. W. 2000: Integrated orchard and nursery management for the control of fire blight. In Fire blight: the disease and its causative agent, Erwinia amylovora, ed. J. L. Vanneste, pp. 339-358. CABI Publishing. Wallingford, UK.
  15. Sugiura, T. 2002: Dormancy and chilling requirement of deciduous fruit tree. Series of Agricultural Technology 8, 2-50.
  16. Thomson, S. V. 2000: Epidemiology of fire blight. In Fire blight: the disease and its causative agent, Erwinia amylovora, ed. J. L. Vanneste, pp. 9-36. CABI Publishing. Wallingford, UK.
  17. Turechek, W. W., and A. R. Biggs, 2015: Maryblyt v. 7.1 for Windows: an improved fire blight forecasting program for apples and pears. Plant Health Prog. 16, 16-22. https://doi.org/10.1094/PHP-RS-14-0046
  18. Wallis, A., J. Carroll, and K. Cox, 2020: Fire blight. Cornell University and the New York State IPM Program. ecommons.cornell.edu/handle/1813/41246
  19. Yang, H. J., M. I. Ahn, S. C. Yun, K. B. NamKung, S. K. Kim, E. W. Park, and Y. K. Han. 2022: Prediction and comparative study on the fire blight infection risk using the K-Maryblyt model for 2020-2022 in Korea. 24th Conference on Agriculture and Forest Meteorology.