• Title/Summary/Keyword: Fire blight

Search Result 55, Processing Time 0.026 seconds

Development of an Improved Loop-Mediated Isothermal Amplification Assay for On-Site Diagnosis of Fire Blight in Apple and Pear

  • Shin, Doo-San;Heo, Gwang-Il;Son, Soo-Hyeong;Oh, Chang-Sik;Lee, Young-Kee;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • Fast and accurate diagnosis is needed to eradicate and manage economically important and invasive diseases like fire blight. Loop-mediated isothermal amplification (LAMP) is known as the best on-site diagnostic, because it is fast, highly specific to a target, and less sensitive to inhibitors in samples. In this study, LAMP assay that gives more consistent results for on-site diagnosis of fire blight than the previous developed LAMP assays was developed. Primers for new LAMP assay (named as DS-LAMP) were designed from a histidine-tRNA ligase gene (EAMY_RS32025) of E. amylovora CFBP1430 genome. The DS-LAMP amplified DNA (positive detection) only from genomic DNA of E. amylovora strains, not from either E. pyrifoliae (causing black shoot blight) or from Pseudomonas syringae pv. syringae (causing shoot blight on apple trees). The detection limit of DS-LAMP was 10 cells per LAMP reaction, equivalent to $10^4$ cells per ml of the sample extract. DS-LAMP successfully diagnosed the pathogens on four fire-blight infected apple and pear orchards. In addition, it could distinguish black shoot blight from fire blight. The $B{\ddot{u}}hlmann$-LAMP, developed previously for on-site diagnosis of fire blight, did not give consistent results for specificity to E. amylovora and on-site diagnosis; it gave positive reactions to three strains of E. pyrifoliae and two strains of P. syringae pv. syringae. It also, gave positive reactions to some healthy sample extracts. DS-LAMP, developed in this study, would give more accurate on-site diagnosis of fire blight, especially in the Republic of Korea, where fire blight and black shoot blight coexist.

Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance (과수화상병 저항성 사과대목의 MR5보유 대목별 비교)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

Improvement of Fire Blight Blossom Infection Control Using Maryblyt in Korean Apple Orchards

  • Kyung-Bong Namkung;Sung Chul Yun
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.504-512
    • /
    • 2023
  • After transitioning from periodic to model-based control policy for fire blight blossom infection, it is crucial to provide the timing of field application with easy and accurate information. To assess the risk of blossom infection, Maryblyt was employed in 31 sites across apple-producing regions nationwide, including areas prone to fire blight outbreaks, from 2021 to 2023. In 2021 and 2023, two and seven sites experienced Blossom Infection Risk-Infection warning occurrences among 31 sites, respectively. However, in 2022, most of the sites observed Blossom Infection Risk-Infection from April 25 to 28, highlighting the need for blossom infection control. For the comparison between the two model-based control approaches, we established treatment 1, which involved control measures according to the Blossom Infection Risk-Infection warning and treatment 2, aimed at maintaining the Epiphytic Infection Potential below 100. The analysis of control values between these treatments revealed that treatment 2 was more effective in reducing Blossom Infection Risk-Infection and the number of days with Epiphytic Infection Potential above 100, with respective averages of 95.6% and 93.0% over the three years. Since 2022, the implementation of the K-Maryblyt system and the deployment of Automated Weather Stations capable of measuring orchard weather conditions, with an average of 10 stations per major apple fire blight county nationwide, have taken place. These advancements will enable the provision of more accurate and timely information for farmers based on fire blight models in the future.

Discriminant analysis to detect fire blight infection on pear trees using RGB imagery obtained by a rotary wing drone

  • Kim, Hyun-Jung;Noh, Hyun-Kwon;Kang, Tae-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.349-360
    • /
    • 2020
  • Fire-blight disease is a kind of contagious disease affecting apples, pears, and some other members of the family Rosaceae. Due to its extremely strong infectivity, once an orchard is confirmed to be infected, all of the orchards located within 100 m must be buried under the ground, and the sites are prohibited to cultivate any fruit trees for 5 years. In South Korea, fire-blight was confirmed for the first time in the Ansung area in 2015, and the infection is still being identified every year. Traditional approaches to detect fire-blight are expensive and require much time, additionally, also the inspectors have the potential to transmit the pathogen, Thus, it is necessary to develop a remote, unmanned monitoring system for fire-blight to prevent the spread of the disease. This study was conducted to detect fire-blight on pear trees using discriminant analysis with color information collected from a rotary-wing drone. The images of the infected trees were obtained at a pear orchard in Cheonan using an RGB camera attached to a rotary-wing drone at an altitude of 4 m, and also using a smart phone RGB camera on the ground. RGB and Lab color spaces and discriminant analysis were used to develop the image processing algorithm. As a result, the proposed method had an accuracy of approximately 75% although the system still requires many flaws to be improved.

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

On-Site Diagnosis of Fire Blight with Antibody-Based Diagnostic Strips (항혈청 기반 진단 스트립을 이용한 과수 화상병 현장진단)

  • Heo, Gwang-Il;Shin, Doo-San;Son, Soo-Hyeong;Oh, Chang-Sik;Park, Duck Hwan;Lee, Young-Kee;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.306-313
    • /
    • 2017
  • Recently fire blight occurred in the Republic of Korea and eradication program for the disease has been executed since then. Specificity and detection sensitivity of the 2 antibody-based diagnostic strips to Korean isolates of Erwinia amylovora (Ea) and their application for on-site diagnosis were evaluated in this study. Ea AgriStrip, a commercial diagnostic kit, and EB strip, developed in this study, reacted positively to the all tested Korean Ea strains and also to most of Erwinia pyrifoliae (Ep) strains causing black shoot blight. They reacted negatively to all Pusedomonas syringae pv. syringae (Pss) strains that cause shoot blight on apple. Detection sensitivity was similar between the 2 strips. For on-site diagnosis, the two strips reacted positively only to the extractions of the fire-blighted samples on all fire blight occurred orchards except one orchard at which on-site diagnosis was carried out at winter time. In addition, they reacted positively to the black-shoot blighted extractions from the black shoot blight occurred apple orchard. These results suggest that both EB strip and Ea AgriStrip would be useful for on-site diagnosis of fire blight in Korea.

Application of the Maryblyt Model for the Infection of Fire Blight on Apple Trees at Chungju, Jecheon, and Eumsung during 2015-2020

  • Ahn, Mun-Il;Yun, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.543-554
    • /
    • 2021
  • To preventively control fire blight in apple trees and determine policies regarding field monitoring, the Maryblyt ver. 7.1 model (MARYBLYT) was evaluated in the cities of Chungju, Jecheon, and Eumseong in Korea from 2015 to 2020. The number of blossom infection alerts was the highest in 2020 and the lowest in 2017 and 2018. And the common feature of MARYBLYT blossom infection risks during the flowering period was that the time of BIR-High or BIR-Infection alerts was the same regardless of location. The flowering periods of the trees required to operate the model varied according to the year and geographic location. The model predicts the risk of "Infection" during the flowering periods, and recommends the appropriate times to control blossom infection. In 2020, when flower blight was severe, the difference between the expected date of blossom blight symptoms presented by MARYBLYT and the date of actual symptom detection was only 1-3 days, implying that MARYBLYT is highly accurate. As the model was originally developed based on data obtained from the eastern region of the United States, which has a climate similar to that of Korea, this model can be used in Korea. To improve field utilization, however, the entire flowering period of multiple apple varieties needs to be considered when the model is applied. MARYBLYT is believed to be a useful tool for determining when to control and monitor apple cultivation areas that suffer from serious fire blight problems.

Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates

  • Choi, Jeong Ho;Kim, Jong-Yea;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.355-365
    • /
    • 2022
  • Erwinia amylovora and E. pyrifoliae are the causative agents of destructive diseases in both apple and pear trees viz. fire blight and black shoot blight, respectively. Since the introduction of fire blight in Korea in 2015, the occurrence of both pathogens has been independently reported. The co-incidence of these diseases is highly probable given the co-existence of their pathogenic bacteria in the same trees or orchards in a city/district. Hence, this study evaluated whether both diseases occurred in neighboring orchards and whether they occurred together in a single orchard. The competition and virulence of the two pathogens was compared using growth rates in vitro and in planta. Importantly, E amylovora showed significantly higher colony numbers than E. pyrifoliae when they were co-cultured in liquid media and co-inoculated into immature apple fruits and seedlings. In a comparison of the usage of major carbon sources, which are abundant in immature apple fruits and seedlings, E. amylovora also showed better growth rates than E. pyrifoliae. In virulence assays, including motility and a hypersensitive response (HR), E. amylovora demonstrated a larger diameter of travel from the inoculation site than E. pyrifoliae in both swarming and swimming motilities. E. amylovora elicited a HR in tobacco leaves when diluted from 1:1 to 1:16 but E. pyrifoliae does not elicit a HR when diluted at 1:16. Therefore, E. amylovora was concluded to have a greater competitive fitness than E. pyrifoliae.

Outbreak of Fire Blight of Apple and Pear and Its Characteristics in Korea in 2019 (2019년 국내 사과와 배 화상병 대발생과 그 특징)

  • Ham, Hyeonheui;Lee, Kyong Jae;Hong, Seong Jun;Kong, Hyun Gi;Lee, Mi-Hyun;Kim, Hyun-Ran;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • To find out the cause of the fire blight outbreak in apples and pears of Korea in 2019, we investigated disease appearing situation of thirty fire blight infected orchards, and interviewed farmers to determine the cultivation characteristics. Fire blight occurred mostly in orchards that had infected more than 2 years before. The cause of this were as follows: farmers did not know the symptoms of the disease properly. It is presumed that it has spread from the first occurrence to the surrounding orchards by flower-visiting insects or farmers and to a short distance or a long distance by the same cultivator or co-farmer. These series of processes repeated in the newly spreading area, and then disease reports increased as farmers became aware of fire blight. To minimize the spread of fire blight in Korea, it suggested that thorough education of farmers for early diagnosis and quantitative detection technology that can diagnose even in no symptom showing plants. And chemical or biological spraying systems suitable for domestic cultivation methods, which are producing large fruits, and molecular epidemiological studies of pathogens.

Outbreak of Fire Blight of Apple and Asian Pear in 2015-2019 in Korea (2015-2019년 국내 과수 화상병 발생)

  • Ham, Hyeonheui;Lee, Young-Kee;Kong, Hyun Gi;Hong, Seong Jun;Lee, Kyong Jae;Oh, Ga-Ram;Lee, Mi-Hyun;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.222-228
    • /
    • 2020
  • Erwinia amylovora, a causal bacterium of fire blight disease, is registered as a prohibited quarantine pathogen in Korea. To control the disease, the government should diagnose the disease, dig and bury the host trees when fire blight occurs. Fire blight was the first reported in 43 orchards of Anseong, Cheonan, and Jecheon in 2015, and 42.9 ha of host trees were eradicated. However, the disease spread to eleven cities, so that 348 orchards and 260.4 ha of host trees were eradicated until 2019. Fire blight of Asian pear occurred mainly in the southern part of Gyeonggi, and Chungnam province, on average of 29±9.2 orchards per year. And the age of the infected trees were mostly 20-30 years old. In apple trees, the disease occurred mainly in the northern part of Gyeonggi, Gangwon, and Chungbuk province, on average of 41±57.6 orchards per year, increased highly in 2018 and 2019. The age of infected apple trees were under 20 years old. Therefore, because the disease spread rapidly in young apple trees, spraying control agents to the trees in a timely manner and removing infected trees quickly are important to prevent the spread of fire blight in the orchard of immature trees.