DOI QR코드

DOI QR Code

Development of K-Maryblyt for Fire Blight Control in Apple and Pear Trees in Korea

  • Received : 2024.02.20
  • Accepted : 2024.04.16
  • Published : 2024.06.01

Abstract

K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This model facilitates the precise determination of the blossom infection timing and identification of primary inoculum sources, akin to Maryblyt, predicting flower infections and the appearance of symptoms on various plant parts, including cankers, blossoms, and shoots. Nevertheless, K-Maryblyt has undergone significant improvements: Integration of Phenology Models for both apple and pear trees, Adoption of observed or predicted hourly temperatures for Epiphytic Infection Potential (EIP) calculation, incorporation of adjusted equations resulting in reduced mean error with 10.08 degree-hours (DH) for apple and 9.28 DH for pear, introduction of a relative humidity variable for pear EIP calculation, and adaptation of modified degree-day calculation methods for expected symptoms. Since the transition to a model-based control policy in 2022, the system has disseminated 158,440 messages related to blossom control and symptom prediction to farmers and professional managers in its inaugural year. Furthermore, the system has been refined to include control messages that account for the mechanism of action of pesticides distributed to farmers in specific counties, considering flower opening conditions and weather suitability for spraying. Operating as a pivotal module within the Fire Blight Forecasting Information System (FBcastS), K-Maryblyt plays a crucial role in providing essential fire blight information to farmers, professional managers, and policymakers.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. RS-2020-RD009731) of the Rural Development Administration of the Republic of Korea.

References

  1. Ahn, M. I., Yang, H. J., Park, J. H., Lee, J. S., Yun, S. C., Lee, Y. H., Kim, S. K., Han, Y. K. and Park, E. W. 2022. Development of forecasting system for fire blight using automatic weather station network. In: 24th Conference on Agriculture and Forest Meteorology. American Meteorology Society, Boston, MA, USA.
  2. Ahn, M.-I. and Yun, S. C. 2021. Application of the Maryblyt model for the infection of fire blight on apple trees at Chungju, Jecheon, and Eumsung during 2015-2020. Plant Pathol. J. 37:543-554.
  3. Anandhi, A. 2016. Growing degree days: ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecol. Indic. 61:149-158.
  4. Arnold, C. Y. 1960. Maximum-minimum temperatures as a basis for computing heat units. Proc. Am. Soc. Hortic. Sci. 76:682-92.
  5. Baskerville, G. L. and Emin, P. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514-517.
  6. Biggs, A. R. and Turechek, W. W. 2010. Fire blight of apples and pears: epidemiological concepts comprising the Maryblyt forecasting program. Plant Health Prog. Online publication. https://doi.org/10.1094/PHP-2010-0315-01-RS.
  7. Billing, E. 1974. The effect of temperature on the growth of the fire blight pathogen, Erwinia amylovora. J. Appl. Bacteriol. 37:643-648.
  8. Billing, E. 2000. Fire blight risk assessment systems and models. In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 293-318. CABI Publishing, Wallingford, UK.
  9. Cesaraccio, C., Spano, D., Snyder, R. L. and Duce, P. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agric. For. Meteorol. 126:1-13.
  10. Farkas, A., Mihalik, E., Dorgai, L. and Buban, T. 2012. Floral traits affecting fire blight infection and management. Trees 26:47-66.
  11. Gouk, S. C., Bedford, R. J. and Hutchings, S. O. 1996. Effect of apple flower phenology on growth of Erwinia amylovora. Phytopathology 86:S42.
  12. Ham, H., Lee, M.-H., Roh. E., Lee, W., Choi, H.-W., Yang, M. S. and Lee, Y. H. 2023. Effect of the registered control agents for fire blight on fire blight disease at flowering stage of apple in Korea. Korean J. Pestic. Sci. 27:344-351 (in Korean).
  13. Han, J. H., Cho, K. S., Choi, J. J., Hwang, H. S., Kim, C. G. and Kim, T.-C. 2010. Estimation of changes in full bloom date of 'Niitaka' pear tree with global warming. Korean J. Hortic. Sci. Technol. 28:931-941 (in Korean).
  14. Han, J. H., Lee, S. H., Choi, J. J., Jung, S. B. and Jang, H. I. 2008. Estimation of dormancy breaking time by development rate model in 'Niitaka' pear (Pyrus pirifolia Nakai). Korean J. Agric. For. Meteorol. 10:58-64 (in Korean).
  15. Hattingh, M. J. Beer, S. V. and Lawson, E. W. 1986. Scanning electron microscopy of apple blossoms colonized by Erwinia amylovora and E. herbicola. Phytopathology 76:900-904.
  16. Johnson, K. B. and Stockwell, V. O. 1998. Management of fire blight: a case study in microbial ecology. Annu. Rev. Phytopathol. 36:227-248.
  17. Lightner, G. W. and Steiner, P. W. 1990. Computerization of a blossom blight prediction model. Acta Hortic. 273:159-162.
  18. Luepschen, N. S., Parker, K. G. and Mills, W. D. 1961. Five-year study of fire blight blossom infection and its control in New York. Bull. Cornell Univ. Agric. Exp. Stn. 963:1-19.
  19. Mills, W. D. 1955. Fire blight development on apple in western New York. Plant Dis. Rep. 39:206-207.
  20. Myung, I.-S., Yun, M.-J., Lee, Y.-H., Kim, G.-D. and Lee, Y.-K. 2016. First report of fire blight caused by Erwinia amylovora on Chinese quince in South Korea. Plant Dis. 100:2521.
  21. Namkung, K.-B. and Yun, S.-C. 2022. A Maryblyt study to apply integrated control of fire blight of pears in Korea. Korean J. Agric. For. Meteorol. 24:305-317.
  22. Namkung, K.-B. and Yun, S. C. 2023a. Improvement of fire blight blossom infection control using Maryblyt in Korean apple orchard. Plant Pathol. J. 39:504-512.
  23. Namkung, K.-B. and Yun, S.-C. 2023b. The effect of daily minimum temperature of the period from dormancy breaking to first bloom on apple phenology. Korean J. Agric. For. Meteorol. 25:208-217.
  24. Park, D. H., Yu, J.-G., Oh, E.-J., Han, K.-S., Yea, M. C., Lee, S. J., Myung, I.-S., Shim, H. S. and Oh, C.-S. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
  25. Pusey, P. L. 2000. The role of water in epiphytic colonization and infection of Pomaceous flowers by Erwinia amylovora. Phytopathology 90:1352-1357.
  26. Pusey, P. L. and Smith, T. J. 2008. Relation of apple flower age to infection of hypanthium by Erwinia amylovora. Plant Dis. 92:137-142.
  27. Rural Development Administration. 2022. Guidelines for the 2022 fire blight forecast and control project. Rural Development Administration, Jeonju, Korea, pp. 55-60.
  28. Rural Development Administration. 2023. Guidelines for the 2023 fire blight forecast and control project. Rural Development Administration, Jeonju, Korea, pp. 58-62.
  29. Schroth, M. N., Thomson, S. V., Hildebrand, D. C. and Moller, W. J. 1974. Epidemiology and control of fire blight. Annu. Rev. Phytopathol. 12:389-412.
  30. Smith, T. J. 1999. Report on the development and use of Cougarblight 98C: a situation specific fire blight risk assessment model for apple and pear. Acta Hortic. 489:429-436.
  31. Steiner, P. W. 1990a. Predicting apple blossom infections by Erwinia amylovora using the MARYBLYT model. Acta Hortic. 273:139-148.
  32. Steiner, P. W. 1990b. Predicting canker, shoot and trauma blight phases of apple fire blight epidemics using the MARBLYT program. Acta Hortic. 273:149-158.
  33. Steiner, P. W. and Lightner, G. W. 1996. Maryblyt 4.3: a predictive program for forecasting fire blight disease in apples and pears. University of Maryland, College Park, MD, USA.
  34. Thomson, S. V. 1986. The role of the stigma in fire blight infection. Phytopathology 76:476-482.
  35. Thomson, S. V. 2000. Epidemiology of fire blight. In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 9-36. CABI Publishing, Wallingford, UK.
  36. Thomson, S. V. and Gouk, S. C. 2003. Influence of age of apple flowers on growth of Erwinia amylovora and biological control agents. Plant Dis. 87:502-509.
  37. Thomson, S. V., Scroth, M. N., Moller, W. J., Reil, W. O., Beutel, J. A. and Davis, C. S. 1977. Pesticide application can be reduced by forecasting the occurrence of fire blight bacteria. Calif. Agric. 31:12-14.
  38. Turechek, W. W. and Biggs, A. R. 2015. Maryblyt v 7.1 for Windows: an improved fire blight forecasting program for apples and pears. Plant Health Prog. 16:16-22.
  39. van der Zwet, T. and Beer, S. V. 1991. Fire blight: its nature, prevention and control: a practical guide to integrated disease management. U.S. Department of Agriculture, Agriculture Information Bulletin. U.S. Department of Agriculture, Washington, DC, USA. 91 pp.
  40. Zoller, B. G. and Sisevich, J. 1979. Blossom populations of Erwinia amylovora in pear orchards vs. accumulated degree hours over 18.3 degrees Celsius, 1972-1976. Phytopathology 69:1050.