DOI QR코드

DOI QR Code

Changes of Soil Temperature and Moisture under the Agrivoltaic Systems in Fallow Paddy Field during Spring Season

봄철 영농형 태양광 시설 하부 휴경논 토양의 온도와 수분 변화

  • Yuna Cho (Department of Applied Plant Science, Chonnam National University) ;
  • Euni Cho (Department of Applied Plant Science, Chonnam National University) ;
  • Jae-Hyeok Jeong (National Institute of Crop Science, Rural Development Administration) ;
  • Hoejeong Jeong (Crop Production Technology Research Division, National Institute of Crop Science, Rural Development Administration) ;
  • Woon-Ha Hwang (National Institute of Crop Science, Rural Development Administration) ;
  • Jaeil Cho (Department of Applied Plant Science, Chonnam National University)
  • 조유나 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 조은이 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 정재혁 (농촌진흥청 국립식량과학원) ;
  • 정회정 (농촌진흥청 국립식량과학원 생산기술개발과) ;
  • 황운하 (농촌진흥청 국립식량과학원) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2022.07.20
  • Accepted : 2023.08.22
  • Published : 2023.09.30

Abstract

An agrivoltaic system (AVS) is a combined system that generates power through photovoltaic panels (PVPs) installed above a field where a crop is cultivated. Although soil moisture is an important limiting factor for open-field crop production, particularly during spring season in Korea, it is not well considered in the utilization of AVS. Indeed, the application of water-energy-food nexus on the AVS should be necessary. In this study, the changes of soil moisture and temperature under the AVS was investigated in fallow paddy field during spring season. The AVS that has partial shading condition by PV panels was decreased soil temperature and increased soil moisture compared to open-field. Furthermore, the maximum of the change in soil moisture to the change in soil temperature had a negative correlation both on open-field and AVS under wet condition. It represents that the micro-climate under the AVS is in energy-limited condition. The open-field of relatively high soil temperature was in water-limited condition. The different behavior of soil moisture on the AVS should be considered for the sustainable agricultural system as related to water-energy-food nexus.

영농형 태양광 시스템은 노지 작물 경작과 동일한 토지 상부에 설치된 태양광 패널을 통한 발전을 동시에 하는 시스템이다. 지금까지 영농형 태양광은 에너지와 식량의 양자구도로만 집중되어있다. 영농환경 중 하나인 토양수분은 강우 또는 관개수로 증발 및 유출⋅침투로 손실된 수분을 공급받아 노지 작물 생산에 기여한다. 본 연구는 식량, 에너지와 함께 물의 개념을 포함하여 영농형 태양광 시설을 보고자 하였으며, 미기상 관측을 통해 봄 기간 동안 휴경논에서 영농형 태양광 시설 하부의 토양수분과 지온의 변화를 분석하였다. 영농형 태양광 하부는 패널로 인한 부분차광 조건으로 지면에 입사되는 광 에너지량이 감소하여 지온이 낮아질 뿐만 아니라 토양수분 손실이 적어 대조구인 노지에 비해 습윤한 조건을 보인다. 또한, 태양광 하부는 에너지 제한 환경이며, 상대적으로 지온이 높은 노지는 수분 제한 환경으로 설명된다. 노지와 태양광 하부의 상이한 토양수분 환경은 필연적으로 작물에 영향을 미칠 것이며, 농업 환경과 농촌 경제를 고려한 지속가능한 대처가 필요하겠다.

Keywords

Acknowledgement

이 논문은 농촌진흥청의 영농형 태양광 유형별 벼 적정 재배기술 개발 및 밭작물 차광 영향 구명(PJ01678001) 지원을 받았으며, 이에 감사드립니다.

References

  1. Barron-Gafford, G. A., M. A. Pavao-Zauckerman, R. L. Minor, L. F. Sutter, L. Barnett-Moreno, D. T. Blackett, N. Thompson, K. Dimond, A. K. Gerlak, G. P. Nabhan, and J. E. Macknick, 2019: Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands. Nature Sustainability 2, 848-855. https://doi.org/10.1038/s41893-019-0364-5
  2. Bhandari, S. N., S. Schluter, W. Kuckshinrichs, H. Schlor, R. Adamou, and R. Bhandari, 2021: Economic feasibility of agrivoltaic systems in food-energy nexus context: Modelling and a case study in Niger. Agronomy 11(10), 1906.
  3. Chamara, R. and C. Beneragama, 2020: Agrivoltaic systems and its potential to optimize agricultural land use for energy production in Sri Lanka: A review. Solar Energy Research 5(2), 417-431.
  4. Cho, Y., C. Yoon, H. Kim, H. Moon, K. N. An, and J. Cho, 2020: Meteorological data measured under agrivoltaic systems in Boseong-gun during winter barley season. Korean Journal of Agriculture and Forest Meteorology 22(3), 144-151. (in Korean with English abstract)
  5. Cho, Y., H. Kim, E. Jo, D. Oh, H. Jeong, C. Yoon, K. An, and J. Cho, 2021: Effect of partial shading by agrivoltaic systems panel on electron transport rate and non-photochemical quenching of crop. Korean Journal of Agricultural and Forest Meteorology 23(2), 100-107. (in Korean with English abstract)
  6. Dupraz, C., H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, 2011: Combining solar photovoltaic panels and food crops for optimizing land use: Towards new agrivoltaic schemes. Renewable Energy 36(10), 2725-2732. https://doi.org/10.1016/j.renene.2011.03.005
  7. Goetzberger, A., and A. Zastrow, 1982: On the coexistence of solar-energy conversion and plant cultivation. International Journal of Solar Energy 1, 55-69. https://doi.org/10.1080/01425918208909875
  8. Gowdy, J., and S. O'Hara, 1997: Weak sustainability and viable technologies. Ecological Economics 22(3), 239-247. https://doi.org/10.1016/S0921-8009(97)00093-1
  9. Gutes, M. C., 1996: The concept of weak sustainability. Ecological Economics 17(3), 147-156. https://doi.org/10.1016/S0921-8009(96)80003-6
  10. Hamidov, A. and K. Helming, 2020: Sustainability considerations in water-energy-food nexus research in irrigated agriculture. Nature Sustainability 12(15), 6274.
  11. Kang, M., S. Sohn, J. Park, J. Kim, S. W. Choi, and S. Cho, 2021: Agro-environmental observation in a rice paddy under an agrivoltaic system: Comparison with the environment outside the system. Korean Journal of Agricultural and Forest Meteorology 23(3), 141-148. (in Korean with English abstract)
  12. Liu, C., Z. Zhang, S. Liu, Q. Liu, B. Feng, and J. Tanzer, 2019: Evaluating agriculture sustainability based on the Water-Energy-Food Nexus in the Chenmengquan irrigation district of China. Nature Sustainability 11(19), 5350.
  13. Monteith, J. L., 1997: Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140
  14. Pearce, D. W., and G. D. Atkinson, 1993: Capital theory and the measurement of sustainable development: An indicator of "weak" sustainability. Ecological Economics 8(2), 103-108. https://doi.org/10.1016/0921-8009(93)90039-9
  15. Philip, J. R., 1966: Plant water relations: Some physical aspects. Annual Review of Plant Physiology 17, 245-268. https://doi.org/10.1146/annurev.pp.17.060166.001333
  16. Proctor, K., S. M. H. Tabatabaie, and G. S. Murthy, 2021a: Gateway to the perspectives of the Food-Energy-Water nexus. Science of the Total Environment 764, 142852.
  17. Proctor, K. W., G. S. Murthy, and C. W. Higgins, 2021b: Agrivoltaics align with Green New Deal goals while supporting investment in the US' rural economy. Nature Sustainability 13(1), 137.
  18. Toledo, C. and A. Scognamiglio, 2021: Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (Three-dimensional agrivoltaic patterns). Nature Sustainability 13, 6871.
  19. Yoon, C., S. Choi, K. N. An, J. H. Ryu, H. Jeong, and J. Cho, 2019: Preliminary experiment of the change of insolation under solar panel mimic shading net. Korean Journal of Agricultural and Forest Meteorology 21(4), 358-365. (in Korean with English abstract)
  20. Zainol Abidin, M. A., M. N. Mahyuddin, and M. A. A. Mohd Zainuri, 2021: Solar photovoltaic architecture and agronomic management in agrivoltaic system: A review. Nature Sustainability 13(14), 7846.