Acknowledgement
This project was financially supported by the National Natural Science Foundation of China (Grant No. 12001527), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200647) and the Postdoctoral Science Foundation of China (Grant No. 2021M693422).
References
- A. Bonami, J. Cao, L. D. Ky, L. Liu, D. Yang, and W. Yuan, Multiplication between Hardy spaces and their dual spaces, J. Math. Pures Appl. (9) 131 (2019), 130-170. https://doi.org/10.1016/j.matpur.2019.05.003
- A. Bonami, J. Feuto, and S. Grellier, Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat. 54 (2010), no. 2, 341-358. https://doi.org/10.5565/PUBLMAT_54210_03
- A. Bonami, S. Grellier, and L. D. Ky, Paraproducts and products of functions in BMO(ℝn) and H1 (ℝn) through wavelets, J. Math. Pures Appl. (9) 97 (2012), no. 3, 230-241. https://doi.org/10.1016/j.matpur.2011.06.002
- A. Bonami, L. D. Ky, Y. Liang, and D. Yang, Several remarks on Musielak-Orlicz Hardy spaces, Bull. Sci. Math. 181 (2022), Paper No. 103206, 35 pp. https://doi.org/10.1016/j.bulsci.2022.103206
- P. L. Butzer and R. J. Nessel, Fourier analysis and approximation, Pure and Applied Mathematics, Vol. 40, Academic Press, New York, 1971.
- L. A. E. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. https://doi.org/10.1007/BF02392815
- X. Fan, J. He, B. Li, and D. Yang, Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces, Sci. China Math. 60 (2017), no. 11, 2093-2154. https://doi.org/10.1007/s11425-016-9024-2
- C. L. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. https://doi.org/10.1007/BF02392215
- H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 3, 509-536. https://doi.org/10.1017/S0305004106009273
- J. Garcia-Cuerva, Weighted Hp spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 63 pp.
- L. Grafakos, Classical Fourier Analysis, third edition, Graduate Texts in Mathematics, 249, Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1194-3
- R. A. Hunt, On the convergence of Fourier series, in Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), 235-255, Southern Illinois Univ. Press, Carbondale, IL, 1968.
- S. Janson, Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J. 47 (1980), no. 4, 959-982. http://projecteuclid.org/euclid.dmj/1077314345 1077314345
- L. D. Ky, Bilinear decompositions and commutators of singular integral operators, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2931-2958. https://doi.org/10.1090/S0002-9947-2012-05727-8
- L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, Integral Equations Operator Theory 78 (2014), no. 1, 115-150. https://doi.org/10.1007/s00020-013-2111-z
- L. D. Ky, Bilinear decompositions for the product space H1L × BMOL, Math. Nachr. 287 (2014), no. 11-12, 1288-1297. https://doi.org/10.1002/mana.201200101
- M.-Y. Lee, Weighted norm inequalities of Bochner-Riesz means, J. Math. Anal. Appl. 324 (2006), no. 2, 1274-1281. https://doi.org/10.1016/j.jmaa.2005.07.085
- B. Li, M. F. Liao, and B. D. Li, Some estimates for maximal Bochner-Riesz means on Musielak-Orlicz Hardy spaces, Math. Notes 107 (2020), no. 3-4, 618-627. https://doi.org/10.1134/s0001434620030293
- Y. Liang, J. Z. Huang, and D. C. Yang, New real-variable characterizations of Musielak-Orlicz Hardy spaces, J. Math. Anal. Appl. 395 (2012), no. 1, 413-428. https://doi.org/10.1016/j.jmaa.2012.05.049
- J. Liu, D. D. Haroske, and D. C. Yang, New molecular characterizations of anisotropic Musielak-Orlicz Hardy spaces and their applications, J. Math. Anal. Appl. 475 (2019), no. 2, 1341-1366. https://doi.org/10.1016/j.jmaa.2019.03.017
- J. Liu, F. Weisz, D. Yang, and W. Yuan, Littlewood-Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications, J. Fourier Anal. Appl. 25 (2019), no. 3, 874-922. https://doi.org/10.1007/s00041-018-9609-3
- S. Sato, Weak type estimates for some maximal operators on the weighted Hardy spaces, Ark. Mat. 33 (1995), no. 2, 377-384. https://doi.org/10.1007/BF02559715
- E. M. Stein, M. H. Taibleson, and G. L. Weiss, Weak type estimates for maximal operators on certain Hp classes, Rend. Circ. Mat. Palermo (2) 1981 (1981), no. suppl, suppl. 1, 81-97.
- E. M. Stein and G. L. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton Univ. Press, Princeton, NJ, 1971.
- J.-O. Stromberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), no. 3, 511-544. https://doi.org/10.1512/iumj.1979.28.28037
- R. M. Trigub and E. S. Belinskii, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004. https://doi.org/10.1007/978-1-4020-2876-2
- F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces, Mathematics and its Applications, 541, Kluwer Acad. Publ., Dordrecht, 2002. https://doi.org/10.1007/978-94-017-3183-6
- F. Weisz, Summability of multi-dimensional trigonometric Fourier series, Surv. Approx. Theory 7 (2012), 1-179.
- F. Weisz, Convergence and Summability of Fourier Transforms and Hardy Spaces, Birkhauser, Basel, 2017.
- F. Weisz, Summability of Fourier transforms in variable Hardy and Hardy-Lorentz spaces, Jaen J. Approx. 10 (2018), no. 1-2, 101-131.
- D. C. Yang, Y. Liang, and L. D. Ky, Real-variable theory of Musielak-Orlicz Hardy spaces, Lecture Notes in Mathematics, 2182, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-54361-1