DOI QR코드

DOI QR Code

TOPOLOGICALLY STABLE POINTS AND UNIFORM LIMITS

  • Namjip Koo (Department of Mathematics Chungnam National University) ;
  • Hyunhee Lee (Department of Mathematics Chungnam National University)
  • Received : 2022.12.01
  • Accepted : 2023.03.02
  • Published : 2023.09.01

Abstract

In this paper we study a pointwise version of Walters topological stability in the class of homeomorphisms on a compact metric space. We also show that if a sequence of homeomorphisms on a compact metric space is uniformly expansive with the uniform shadowing property, then the limit is expansive with the shadowing property and so topologically stable. Furthermore, we give examples to illustrate our results.

Keywords

Acknowledgement

This work was supported by the National Research Foundations of Korea(NRF) grant funded by the Korea government(MSIT)(No.2020R1F1A1A01068032). The second was supported by the National Research Foundations of Korea(NRF) grant funded by the Korea government(MSIT)(No. 2021R1A6A3A13039168). The authors are grateful to the refree for the comments on the previous version of this paper.

References

  1. N. Aoki and K. Hiraide, Topological theory of dynamical systems, North-Holland Mathematical Library, 52, North-Holland, Amsterdam, 1994.
  2. J. Aponte and H. Villavicencio Fern'andez, Shadowable points for flows, J. Dyn. Control Syst. 24 (2018), no. 4, 701-719. https://doi.org/10.1007/s10883-017-9381-8
  3. A. Arbieto and E. F. Rego, Positive entropy through pointwise dynamics, Proc. Amer. Math. Soc. 148 (2020), no. 1, 263-271. https://doi.org/10.1090/proc/14682
  4. L. Fern'andez and C. Good, Shadowing for induced maps of hyperspaces, Fund. Math. 235 (2016), no. 3, 277-286. https://doi.org/10.4064/fm136-2-2016
  5. N. Kawaguchi, Quantitative shadowable points, Dyn. Syst. 32 (2017), no. 4, 504-518. https://doi.org/10.1080/14689367.2017.1280664
  6. A. G. Khan and T. Das, Stability theorems in pointwise dynamics, Topology Appl. 320 (2022), Paper No. 108218, 14 pp. https://doi.org/10.1016/j.topol.2022.108218
  7. N. Koo, K. Lee, and C. A. Morales Rojas, Pointwise topological stability, Proc. Edinb. Math. Soc. (2) 61 (2018), no. 4, 1179-1191. https://doi.org/10.1017/s0013091518000263
  8. N. Koo, H. Lee, and N. Tsegmid, On the almost shadowing property for homeomorphisms, J. Chungcheong Math. Soc. 35 (2022), no. 4, 329-333.
  9. K. Lee and C. A. Morales Rojas, On almost shadowable measures, Russ. J. Nonlinear Dyn. 18 (2022), no. 2, 297-307. https://doi.org/10.20537/nd220210
  10. K. Lee and J. S. Park, Points which satisfy the closing lemma, Far East J. Math. Sci. 3 (1995), no. 2, 171-177.
  11. C. A. Morales Rojas, Shadowable points, Dyn. Syst. 31 (2016), no. 3, 347-356. https://doi.org/10.1080/14689367.2015.1131813
  12. A. Morimoto, Some stabilities of group automorphisms, in Manifolds and Lie groups (Notre Dame, Ind., 1980), 283-299, Progr. Math., 14, Birkhauser, Boston, MA, 1981.
  13. S. Y. Pilyugin, Shadowing in dynamical systems, Lecture Notes in Mathematics, 1706, Springer, Berlin, 1999.
  14. W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.2307/2031982
  15. P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 231-244, Lecture Notes in Math., 668, Springer, Berlin, 1978.