DOI QR코드

DOI QR Code

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu (Department of Applied Statistics, Gachon University) ;
  • Eunju Hwang (Department of Applied Statistics, Gachon University)
  • Received : 2022.08.25
  • Accepted : 2023.03.29
  • Published : 2023.05.31

Abstract

In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

Keywords

Acknowledgement

This research was supported by Research Fund of Gachon University (GCU-202104590001).

References

  1. Al-Osh MA and Alzaid AA (1987). First-Order integer-valued autoregressive (INAR(1)) process, Journal of Time Series Analysis, 8, 261-275. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
  2. Al-Osh MA and Alzaid AA (1988). Integer-Valued moving average (INMA) process, Statistical Papers, 29, 281-300. https://doi.org/10.1007/BF02924535
  3. Al-Osh MA and Alzaid AA (1990). An integer-valued p th-order autoregressive structure INAR(p) process, Journal of Applied Probability, 27, 314-324. https://doi.org/10.2307/3214650
  4. Appiah S and Maposa D (2021). An integer-valued modelling and forecast of COVID-19 cases in Ghana: A review and comparative study, Transylvanian Review, 29, 15712-15722.
  5. Boeh K and Dunbar C (2014). IPO waves and the issuance process, Journal of Corporate Finance, 25, 455-473. https://doi.org/10.1016/j.jcorpfin.2014.02.001
  6. Cardinal M, Roy R, and Lambert J (1999). On the application of integer-valued time series models for the analysis of disease incidence, Statistics in Medicine, 18, 2025-2039. https://doi.org/10.1002/(SICI)1097-0258(19990815)18:15<2025::AID-SIM163>3.0.CO;2-D
  7. Catania L and Di Mari R (2021). Hierarchical Markov-switching models for multivariate integer-valued time-series, Journal of Econometrics, 221, 118-137. https://doi.org/10.1016/j.jeconom.2020.02.002
  8. Chang L, Liu X, Wang D, Jing Y, and Li C (2022). First-Order random coefficient mixed-thinning integer-valued autoregressive model, Journal of Computational and Applied Mathematics, 410, 114222.
  9. Jentsch C and Weiss CH (2017). Bootstrapping INAR Models, University of Mannheim, Department of Economics.
  10. Du JG and Li Y (1991). The integer-valued autoregressive (INAR(p)) model, Journal of Time Series Analysis, 12, 129-142. https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
  11. Ferland R, Latour A, and Oraichi D (2006). Integer-Valued GARCH process, Journal of Time Series Analysis, 27, 923-942. https://doi.org/10.1111/j.1467-9892.2006.00496.x
  12. Freeland R and McCabe B (2004). Analysis of low count time series data by Poisson autoregression, Journal of Time Series Analysis, 25, 701-722. https://doi.org/10.1111/j.1467-9892.2004.01885.x
  13. Freeland R and McCabe B (2005). Asymptotic properties of CLS estimators in the Poisson AR(1) model, Statistics and Probability Letters, 73, 147-153. https://doi.org/10.1016/j.spl.2005.03.006
  14. Gucbilmez U (2015). IPO waves in China and Hong Kong, International Review of Financial Analysis, 40, 14-26. https://doi.org/10.1016/j.irfa.2015.05.010
  15. Hwang E and Shin D (2014). Infinite-Order, long-memory heterogeneous autoregressive models, Computational Statistics and Data Analysis, 76, 339-358. https://doi.org/10.1016/j.csda.2013.08.009
  16. Ibragimov IA (1962). Some limit theorems for stationary processes, Theory of Probability and Its Applications, 7, 349-382. https://doi.org/10.1137/1107036
  17. Ivanov V and Lewis CM (2008). The determinants of market-wide issue cycles for initial public offerings, Journal of Corporate Finance, 14, 567-583. https://doi.org/10.1016/j.jcorpfin.2008.09.009
  18. Klimko LA and Nelson PI (1978). On conditional least squares estimation for stochastic processes, The Annals of Statistics, 6, 629-642. https://doi.org/10.1214/aos/1176344207
  19. Kowal D (2019). Integer-Valued functional data analysis for measles forecasting, Biometrics, 75, 1321-1333. https://doi.org/10.1111/biom.13110
  20. Lu F and Wang D (2022). A new estimation for INAR(1) process with Poisson distribution, Computational Statistics, 37, 1185-1201. https://doi.org/10.1007/s00180-021-01157-5
  21. Mahmoudi E and Rostami A (2020). First-Order integer-valued moving average process with power series innovations, Journal of Statistical Theory and Applications, 19, 415-431. https://doi.org/10.2991/jsta.d.200917.001
  22. McCabe BPM and Martin GM (2005). Bayesian prediction of low count time series, International Journal of Forecasting, 21, 315-330. https://doi.org/10.1016/j.ijforecast.2004.11.001
  23. McKenzie E (1985). Some simple models for discrete variate time series, Water Resources Bulletin, 21, 635-644. https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
  24. McKenzie E (1988). Some ARMA models for dependent sequences of Poisson counts, Advances in Applied Probability, 20, 822-835. https://doi.org/10.2307/1427362
  25. Orozco DLR, Sales LOF, Fernandez LMZ, and Pinho ALS (2021). A new mixed first-order integer-valued autoregressive process with Poisson innovations, AStA Advances in Statistical Analysis, 105, 559-580. https://doi.org/10.1007/s10182-020-00381-6
  26. Park YS and Oh CH (1997). Some asymptotic properties in INAR(1) processes with Poisson marginals, Statistical Papers, 38, 287-302. https://doi.org/10.1007/BF02925270
  27. Steutel FW and van Harn K (1979). Discrete analogues of self-decomposability and stability, The Annals of Probability, 7, 893-899. https://doi.org/10.1214/aop/1176994950
  28. Wang X and Ning C (2022). A new Markov regime-switching count time series approach for forecasting initial public offering volumes and detecting issue cycles, Journal of Forecasting, 41, 118-133. https://doi.org/10.1002/for.2799
  29. Xiaochun L (2019). On tail fatness of macroeconomic dynamics, Journal of Macroeconomics, 62, 103154.
  30. Yang K, Kang Y, Wang D, Li H, and Diao Y (2019). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes, Metrika, 82, 863-889. https://doi.org/10.1007/s00184-019-00714-9