Acknowledgement
This research was supported by Research Fund of Gachon University (GCU-202104590001).
References
- Al-Osh MA and Alzaid AA (1987). First-Order integer-valued autoregressive (INAR(1)) process, Journal of Time Series Analysis, 8, 261-275. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
- Al-Osh MA and Alzaid AA (1988). Integer-Valued moving average (INMA) process, Statistical Papers, 29, 281-300. https://doi.org/10.1007/BF02924535
- Al-Osh MA and Alzaid AA (1990). An integer-valued p th-order autoregressive structure INAR(p) process, Journal of Applied Probability, 27, 314-324. https://doi.org/10.2307/3214650
- Appiah S and Maposa D (2021). An integer-valued modelling and forecast of COVID-19 cases in Ghana: A review and comparative study, Transylvanian Review, 29, 15712-15722.
- Boeh K and Dunbar C (2014). IPO waves and the issuance process, Journal of Corporate Finance, 25, 455-473. https://doi.org/10.1016/j.jcorpfin.2014.02.001
- Cardinal M, Roy R, and Lambert J (1999). On the application of integer-valued time series models for the analysis of disease incidence, Statistics in Medicine, 18, 2025-2039. https://doi.org/10.1002/(SICI)1097-0258(19990815)18:15<2025::AID-SIM163>3.0.CO;2-D
- Catania L and Di Mari R (2021). Hierarchical Markov-switching models for multivariate integer-valued time-series, Journal of Econometrics, 221, 118-137. https://doi.org/10.1016/j.jeconom.2020.02.002
- Chang L, Liu X, Wang D, Jing Y, and Li C (2022). First-Order random coefficient mixed-thinning integer-valued autoregressive model, Journal of Computational and Applied Mathematics, 410, 114222.
- Jentsch C and Weiss CH (2017). Bootstrapping INAR Models, University of Mannheim, Department of Economics.
- Du JG and Li Y (1991). The integer-valued autoregressive (INAR(p)) model, Journal of Time Series Analysis, 12, 129-142. https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
- Ferland R, Latour A, and Oraichi D (2006). Integer-Valued GARCH process, Journal of Time Series Analysis, 27, 923-942. https://doi.org/10.1111/j.1467-9892.2006.00496.x
- Freeland R and McCabe B (2004). Analysis of low count time series data by Poisson autoregression, Journal of Time Series Analysis, 25, 701-722. https://doi.org/10.1111/j.1467-9892.2004.01885.x
- Freeland R and McCabe B (2005). Asymptotic properties of CLS estimators in the Poisson AR(1) model, Statistics and Probability Letters, 73, 147-153. https://doi.org/10.1016/j.spl.2005.03.006
- Gucbilmez U (2015). IPO waves in China and Hong Kong, International Review of Financial Analysis, 40, 14-26. https://doi.org/10.1016/j.irfa.2015.05.010
- Hwang E and Shin D (2014). Infinite-Order, long-memory heterogeneous autoregressive models, Computational Statistics and Data Analysis, 76, 339-358. https://doi.org/10.1016/j.csda.2013.08.009
- Ibragimov IA (1962). Some limit theorems for stationary processes, Theory of Probability and Its Applications, 7, 349-382. https://doi.org/10.1137/1107036
- Ivanov V and Lewis CM (2008). The determinants of market-wide issue cycles for initial public offerings, Journal of Corporate Finance, 14, 567-583. https://doi.org/10.1016/j.jcorpfin.2008.09.009
- Klimko LA and Nelson PI (1978). On conditional least squares estimation for stochastic processes, The Annals of Statistics, 6, 629-642. https://doi.org/10.1214/aos/1176344207
- Kowal D (2019). Integer-Valued functional data analysis for measles forecasting, Biometrics, 75, 1321-1333. https://doi.org/10.1111/biom.13110
- Lu F and Wang D (2022). A new estimation for INAR(1) process with Poisson distribution, Computational Statistics, 37, 1185-1201. https://doi.org/10.1007/s00180-021-01157-5
- Mahmoudi E and Rostami A (2020). First-Order integer-valued moving average process with power series innovations, Journal of Statistical Theory and Applications, 19, 415-431. https://doi.org/10.2991/jsta.d.200917.001
- McCabe BPM and Martin GM (2005). Bayesian prediction of low count time series, International Journal of Forecasting, 21, 315-330. https://doi.org/10.1016/j.ijforecast.2004.11.001
- McKenzie E (1985). Some simple models for discrete variate time series, Water Resources Bulletin, 21, 635-644. https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
- McKenzie E (1988). Some ARMA models for dependent sequences of Poisson counts, Advances in Applied Probability, 20, 822-835. https://doi.org/10.2307/1427362
- Orozco DLR, Sales LOF, Fernandez LMZ, and Pinho ALS (2021). A new mixed first-order integer-valued autoregressive process with Poisson innovations, AStA Advances in Statistical Analysis, 105, 559-580. https://doi.org/10.1007/s10182-020-00381-6
- Park YS and Oh CH (1997). Some asymptotic properties in INAR(1) processes with Poisson marginals, Statistical Papers, 38, 287-302. https://doi.org/10.1007/BF02925270
- Steutel FW and van Harn K (1979). Discrete analogues of self-decomposability and stability, The Annals of Probability, 7, 893-899. https://doi.org/10.1214/aop/1176994950
- Wang X and Ning C (2022). A new Markov regime-switching count time series approach for forecasting initial public offering volumes and detecting issue cycles, Journal of Forecasting, 41, 118-133. https://doi.org/10.1002/for.2799
- Xiaochun L (2019). On tail fatness of macroeconomic dynamics, Journal of Macroeconomics, 62, 103154.
- Yang K, Kang Y, Wang D, Li H, and Diao Y (2019). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes, Metrika, 82, 863-889. https://doi.org/10.1007/s00184-019-00714-9