• 제목/요약/키워드: conditional least squares estimate

검색결과 7건 처리시간 0.021초

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

Pointwise Estimation of Density of Heteroscedastistic Response in Regression

  • Hyun, Ji-Hoon;Kim, Si-Won;Lee, Sung-Dong;Byun, Wook-Jae;Son, Mi-Kyoung;Kim, Choong-Rak
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.197-203
    • /
    • 2012
  • In fitting a regression model, we often encounter data sets which do not follow Gaussian distribution and/or do not have equal variance. In this case estimation of the conditional density of a response variable at a given design point is hardly solved by a standard least squares method. To solve this problem, we propose a simple method to estimate the distribution of the fitted vales under heteroscedasticity using the idea of quantile regression and the histogram techniques. Application of this method to a real data sets is given.

A Comparision on CERES & Robust-CERES

  • 오광식;도수희;김대학
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 추계학술대회
    • /
    • pp.93-100
    • /
    • 2003
  • It is necessary to check the curvature of selected covariates in regression diagnostics. There are various graphical methods using residual plots based on least squares fitting. The sensitivity of LS fitting to outliers can distort their residuals, making the identification of the unknown function difficult to impossible. In this paper, we compare combining conditional expectation and residual plots(CERES Plots) between least square fit and robust fits using Huber M-estimator. Robust CERES will be far less distorted than their LS counterparts in the presence of outliers and hence, will be more useful in identifying the unknown function.

  • PDF

An Analysis of Panel Count Data from Multiple random processes

  • 박유성;김희영
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2002
  • An Integer-valued autoregressive integrated (INARI) model is introduced to eliminate stochastic trend and seasonality from time series of count data. This INARI extends the previous integer-valued ARMA model. We show that it is stationary and ergodic to establish asymptotic normality for conditional least squares estimator. Optimal estimating equations are used to reflect categorical and serial correlations arising from panel count data and variations arising from three random processes for obtaining observation into estimation. Under regularity conditions for martingale sequence, we show asymptotic normality for estimators from the estimating equations. Using cancer mortality data provided by the U.S. National Center for Health Statistics (NCHS), we apply our results to estimate the probability of cells classified by 4 causes of death and 6 age groups and to forecast death count of each cell. We also investigate impact of three random processes on estimation.

  • PDF

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • 제28권6호
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

Quantile 회귀분석을 이용한 극대강수량 자료의 경향성 분석 (Trend Analysis of Extreme Precipitation Using Quantile Regression)

  • 소병진;권현한;안정희
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.815-826
    • /
    • 2012
  • 기존 Ordinary Regression (OR) 방법을 이용한 경향성 분석은 경향성을 과소평가하는 문제점을 나타낸다. 이러한 점에서 본 연구에서는 자료의 정규분포 가정과 평균을 중심으로 경향성 평가가 이루어지는 기존 Ordinary Regression (OR) 방법을 개선한 Quantile Regression (QR) 방법을 제안하였다. 본 연구에서는 64개 강우 관측지점의 연 최대 극대강수량 자료에 대하여 QR 방법과 OR 방법에 대하여 통계적 성능을 평가하였다. QR 방법의경향성 분석결과 47개 지점에서 5% 오차수준 내에서 t-검정을 통과한 반면 OR 방법에서는 13개 지점 만이 통계적 유의성을 가지는 것으로 나타났다. 이는 OR 방법이 자료의 평균을 중심으로 경향성을 평가하는 기법인데 반해 QR은 자료의 다양한 분위에서 경향성을 평가함으로써 극대 및 극소 부분에서의 경향성을 보다 유연하게 감지하는 이유로 판단된다. QR 방법을 통한 경향성 평가는 평균 중심의 해석문제점을 개선할 수 있으며 자료가 정규분포를 따르지 않거나 왜곡된 분포형태를 갖는 자료의 수문학적 경향성 평가에 유용하게 사용될 수 있을 것으로 판단된다.