• 제목/요약/키워드: Yule-Walker estimate

검색결과 3건 처리시간 0.017초

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

수산 관련 시계열 자료를 이용한 통계학적 분석에서의 자기상관에 대한 고찰 (Autocorrelation in Statistical Analyses of Fisheries Time Series Data)

  • 박영철;히야마 요시아끼
    • 한국수산과학회지
    • /
    • 제35권3호
    • /
    • pp.216-222
    • /
    • 2002
  • 시계열자료가 가진 자기상관은 추정된 상관관계를 왜곡시키는 요인들 중의 하나로 작용한다. 회귀모형의 잔차항에 자기상관이 있는 지를 검정하기 위해 Durbin-Watson 통계량이 흔히 쓰인다. 잔차항에 자기상관을 가진 회귀모형의 효율성을 향상시키기 위해 yule-Walker 법, 비선형최소제곱법, 최우추정법 및 사전백색화법이 사용되어 왔다. 본 연구는 자기상관으로 인한 상관관계의 왜곡을 방지하기 위한 이들 방법들에 대해 고찰하였다. 사전백색화법을 제외한 앞의 3가지 방법을 20년간의 실제 시계열 자료에 적용하였으며 몬테카를로법을 이용하여 각 방법의 오차변이를 조사하였다. 각 방법의 평균잔차제곱분포의 경우, 최우추정법으로 추정된 평균잔차제곱이 가장 작았으며 분포 범위도 가장 작았으나 각 추정방법 사이에 유의한 차이가 발견되지는 않았다.

On a Multiple Data Handling Method under Online Parameter Estimation

  • Takeyasu, Kazuhiro;Amemiya, Takashi;Iino, Katsuhiro;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • 제1권1호
    • /
    • pp.64-72
    • /
    • 2002
  • In the field of plant maintenance, data that are gathered by sensors on multiple machines are handled and analyzed. Online or pseudo online data handling is required on such fields. When the data occurrence speed exceeds the data handling speed, multiple data should be handled at a time (batch data handling or pseudo online data handling). If l amount of data are received at one time following N amount of data, how to estimate the new parameters effectively is a great concern. A new simplified calculation method, which calculates the N data's weights, is introduced. Numerical examples show that this new method has a fairly god estimation accuracy and the calculation time is less than 1/10 compared with the case when the whole data are re-calculated. Even under the restriction calculation ability in the apparatus is limited, this proposed method makes the failure detection of equipments possible in early stages with a few new coming data. This method would be applicable in many data handling fields.