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Abstract. In the field of plant maintenance, data that are gathered by sensors on multiple machines are handled
and analyzed. Online or pseudo online data handling is required on such fields. When the data occurrence speed
exceeds the data handling speed, multiple data should be handled at a time (batch data handling or pseudo online
data handling). If / amount of data are received at one time following N amount of data, how to estimate the new
parameters effectively is a great concern. A new simplified calculation method, which calculates the N data’s
weights, is introduced. Numerical examples show that this new method has a fairly good estimation accuracy
and the calculation time is less than 1/10 compared with the case when the whole data are re-calculated. Even
under the restriction calculation ability in the apparatus is limited, this proposed method makes the failure
detection of equipments possible in early stages with a few new coming data. This method would be applicable

in many data handling fields.
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1. INTRODUCTION

In the field of plant maintenance, the dominant
maintenance method is shifting from Time Based
Maintenance (TBM) to Condition Based Maintenance
{CBM). In CBM, machines are watched continuously and
data are gathered by sensors and analyzed. Online or
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pseudo online data handling is required on such field.
Calculating Root mean square of data, Kurtosis, Bicoherence
or distance of system parameters, we use them as the
method for diagnosis of machines.

In this paper, we discuss the failure detection by
inspecting the changes of the parameter distance. For
CBM, these detections should be done continuously. Here
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the detection is done by calculating the change of system
parameters. It is well known how to estimate the system
parameters sequentially when one new datum is added to
N amount of data already obtained (Tokumaru er al.,
1982; Sagara ef al., 1994; Katayama, 1994). However, in
the case that the data occurrence speed exceeds the data
handling speed, multiple data should be handled at a time
{(batch data handling or pseudo online data handling). For
example, we have to estimate the system parameters in
such case that N say 5000, data are already given and on
the top of this, / say 100, data are newly added.

In this paper, we discuss these matters and propose a
new method to calculate the parameters effectively. So
far, Nakamura et a/. (1984) proposed a method to shorten
the calculation time. They calculated parameters of
whitening filters in the generalized least square method
and utilized the memory for the autocorrelation function
and the cross correlation function of input and output data.
Yamagata et al. (2001) proposed a method for real time
diagnosis. They estimated the volume of bias of measure-
ment data utilizing dynamic responses of plant and then
estimated the condition, which is not affected by the
breakdown of measurement apparatus. Although some
related papers have been published, as above mentioned,
the theme in this paper is concerned with multiple data
handling newly got and the proposed method is a unique
one.

We introduce the objective model in section 2. A
new method is proposed in section 3. Other approaches
are referred in section 4 and 5. In section 6, numerical
examples are exhibited.

2. FACTORS FOR VIBRATION
CALCULATION

In the analysis of time series data, Autoregressive
(AR) model or Autoregressive Moving Average (ARMA)
model are frequently adopted. In this paper we adopt AR
model, because it has a good estimation property
{unbiased estimation) and is easy to identify.

Consider the p-th order AR model expressed as

P
In + Zazgn—z =€n (1)
2=1
Here,
{x.} : Sample process of a stationary ergodic gaussian

process x(t)
(n=1,2,3,, N, )
{e,} : Gaussian noise of mean 0, variance ¢?
Assume that (1) satisfies the stationarity condition.
Let

Z, =
0 =

["‘3-:'11—]- T _‘xn~p]T

l[a1, a2, -, ap)T
then, «x, can be expressed as
Ly = GTZH + en (2)

If we set the criteria function as

N

Gy =3 [ra-072.), 3)

n=1

Then the estimation of 4 denoted by 6, , which gives the
minimum least square of Gy, is given by

) N N
Oy = [Z ani} Z,xn (4)
n=1 1

n=

If 7 amount of data are newly added to N amount of data
(typical case is that this sequential data are added
Xn+1s XNtz . Xnes 10 Xy, X3, <+, xy), We can detect the

irregular condition by calculating

J=16x11—0n)? %)

or J in which 6, is replaced by @y, which is the
estimated parameter vector with N data obtained under
normal condition.

J = 0ns1 O, I (6)

As an irregular condition appeares in the machine
operation, system parameters change usually, and the
distance of parameters grows big. We may consider that a
failure condition arise if the score of J exceeds a certain
value Jy. Jomay be determined by machines. This kind of
method is generally used in failure detection. For
example, in the case of using the root mean square (RMS)
of the original time series, the distance of RMS from
normal condition is calculated. When the distance value
exceeds certain value, the corresponding condition is
judged as a failure. System parameters distance method is
sophisticated than that of RMS because the first is equal
to the system identification process while the latter is only
raw data handling.

In this paper, we examine three cases in estimating Gy.
1. The case of using an autocorrelation function

2. The case of using the canonical equation

N N
{Z Z, ZZ} u=D) Zuru )
n=1

n=1
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3. The case of repeating recursive estimation

The third one is only for a reference, because we try to
deal newly got / data, not one datum, which is the
situation of case 3.

3. THE CASE OF USING AUTOCORRE-
LATION FUNCTION

The autocorrelation function of {x,} is stated as
R; = Elzn,2p4 ] 8
R_,=R;

by definition.
For AR process, the folIowmg Yule-Walker equation
holds true.

Ry +ai1Ro+asRy + -+
Ro+a1R1+agRg+---

+ apRp_l =0
+ apRp._g =0
®

Rp + alRp_1 + (IQRP_Q +--+ (lpR() =0

Now, assume that we get N amount data {x,:n=1,2, -+,
N}. Inthis case Ry, the estimation of R, is stated as

1 =
Ry, = e T,7, (10}
N = N 7 ; +J
Assume that we receive / data {x, : n=N+1, N+2, -, N+{}
on the top of this, then
Ngl=y
N N+l— Z Todypy
(1mn
N — l
= Wt e

where Ry, , denote the estimated autocorrelation function
by using only / amount of data from N+1 to N+/ (In
detail, see Appendix 1)

We may safely assume that

N>»Il>»p

because the order p of AR model is usually within the
range of several order to scores of order. Since j satisfies

J<p—-1
(11) can be expressed as

. N l
Ryypy >~ mRNj -+ N lRN/lJ (12)
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Now, let @ and £ be defined as

N [

Vel PN 13

Replacing the autocorrelation functions of (9) by the
estimation, we obtain

. N = -1 .
Byo Ry Ry.pr Ry
N B Ryy v Bnpes Ry 2
Oy = — . . . . . (14)
IZ}N p—1 RN p-2 e RN 4] RN I3

(éN is used as the estimation of 8. In this paper, different
methods of estimation are introduced such as section 4
and 5, so contents are different by method.)

If ] amount of data are added, then

1:31, 0 1:35 1 ffL -1 - }:{L 1
R Ry Rpg Ry p-2 Rp ,
nyi=— .
Rppn Brya - Rpg Ry,
[ aRno+BRyua aRy o1+ BByt pa
aRn i+ RN oRynp 2+ /3RN/: P2
L af?N p—1+ ﬁff;\:/f a1 (!RN o+ ﬂRN/[ 0
i CY]?NJ +,BI?N/£ 1
aRn 2+ BRyja
. (15}
| aBin p+ BBy,
Here, L=N+1
Let
Btno I?N 1 ]:i’N 1
Ry Hyo By pea
A = . . ,
Ry p-1 RN-;»—Q RN 0
Rypo  Bupa Ryjtp-1
Ry Bypo Byt p—2
B = . . :
L Bnjip—1 Bnjip—2 Ryjo
[ By
Ry
C = i
L RN‘p
[ Bnja
Rz
D = !
L Ryjip

Using the following formula,
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i
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-1+Q'Q

we get

R R I l
8,\x+,=0N—NA D - A By
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) [I+ Ais} (A7'B)?0y
)

(1
(5
( ’ D

-1
+<l,) A7'B [I+ lA‘lB} (ATIB)2ATID (16)
N N

(In detail, see Appendix 2)

Since N > I, éN can be approximated as
{ l

Ongr = @N—NA”ID—NA"lBéN 17)
or

. 5 - L 1o

0N+l ~ QN_—N—A D—NA BBN

2 2
+(iv> (A7'B)’ Oy +(i{> AT'BAT'D (18)

If we adopt (17), we can calculate simply by partially
utilizing matrices in 8, 's calculation.
Here, we examine the meaning of (15)~(18). Let

i

O we

&

Y

I

1l
o

O m o>

I
o

we can get

~[r+a7'B] ' [A"c+ (a7'B) (B7'D)] (19)

éNﬂ =
{In detail, see Appendix 3)

., N} data, and
-, N+1} data. éN

A, C are calculated by using {1,
B, D are calculated by using {N+1,
can be obtained as

Oy = —A'C (20)

from {1, -+, N} data, and the corresponding value & .,
N

derived from {N+1, ---, N+/} data is given as

>
|
m.

D @

In{19), Z"E can be considered to be a weight calculated
from {1, «--, N} data, attaching to 9 ..
N

Let
ATB=F (22)

then, since all elements of F are of order O(//N), we can
get the following (23), (24).

éN-H :[I—{—F]wl [(’)N +Fé%:i (23)
- [I"LZ(_F)A} [é}N +Féi§_,} (24)
h=1
The Ist order approximation of éN+, is
Oy =1~ F)0x + FO ] (25)
Neglecting O(F 2), we get
On+i ~ Oy —FOy + FOxg (26)
which coincide with (17).
The 2nd order approximation is
Onii=[I—F+F0y +FOru]  (27)

Neglecting O(F *), we get
éN-H o éN - FéN + Fzéy -+ Fég%u_ - FQQQ_IG_L (28)
Which coincide with (18).

In utilizing this method to the defect detection, it is
natural to take the following steps.

First get N amount of data under regular condition
and calculate 4, éN, which appear in (17), and then
calculate éNH receiving new / amount of data. Then the
failure of machines can be detected by (6).

Newly added / amount of data may be those
following N amount of data. However, using this method
for failure detection, it is often the case that the first N
data are those for regular condition and the newly
obtained / amount data represent the current situation, that
mean time at which / amount of data are received can be
separated from the time N data are taken.

4. THE CASE OF USING CANONICAL
EQUATION

Using the canonical equation of (7), we can get
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N L Nt
Oy = [Zzuzﬂ ZZ,,:I'“
rr=1 n==l
A Nl -1
= {ZZ,,Z,’,# > z,,z;{}

nwi n— N1

N Nl
(Z Z,z, + Z Zn-’f’n) (29)

1 nwz N4 1
Let
N
K=Y 7,2}
n=1
N+l
L= > 2,2]
n=NA4-1
N
M = Z Z,r,
n=1
N1
N= Z ann
s N 41
then
On = [K+L]'[M+N] (30)

Although signs may differ because of the difference of
definition, this is the same form with (19).

Adopting (12} and (13), (30) can be expressed as

by = —[NA+IB]"'[NC+ID] G1)
= —[A+B| ' C+D]

and it is quite the same with (19). Therefore, the 1st order
approximation and the 2nd order approximation lead to
the same kind of equations of (25) and (27) respectively.

5. THE CASE OF REPEATING RECURSIVE
ESTIMATION

Assume we are given N amount of data and we get
newly (V+1)-th data, then

N1 “L N
N v )
BN-{-I == § ZnZn E Zn‘Ln
n=1

n=1
-1

N
= [}: Z, 27 + ZNHZ}CH}

n==1

N
(Z Z.Tn + ZN+1£N+1) (32)

n=1

Let

N
Z,Z] = Ay
1

=

Using the formula

—IRRIQ—I
+ RRI -1 — -1 Q
Q ) Q IR 'R
Q:nxn, Rinx1l, R:1xn)
we get
AV Zn i Zh AR
Aj—vl_i_l — A—]—Vl _ N §+1 N+19N (33)
14+ Zy AV Zag
A AN Zy 1 2 .
Onay = (1- NT NH-]N-H O
P+ Zn AN ZN
A‘1ZN 1TN
N + +1 (34)

L+ Z3 1 AN Zng
It can be re-stated as
Onpr=(1— Kn11Z8.1)0n + Knponir (35)
Knt1=PyZyii(1+ 25 PNZhy) ™ (36)
Pyi1={I-Kyi1Zy )Py (37)
Where 4™y = Py.

~

0., is stated as

:
Onyl = H(I ~Kn+Zy,,)0N

[ED
-1 (l—)
+ z {H(I - KN-H'+I—2Z£+1+1_L}} ' KN+JIIIN+J
=1 La=1
Ky i@y (38)

(In detail, see Appendix 4)

Although this mathematical expression is simple, the
volume of calenlation does not differ from [ times of the
calculation for (35)~(37), because it is only a recursive
calculation itself. Introducing our method reduces the
amount of the calculations substantially.

If N is sufficiently large, using the relation shown in
section 3,

T - 1 .
L+ 2y A Zns =140 (j\;> = 1 (N—0)(39)

Therefore, ém, can be approximated as
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O~ (- AKJIZN+1Z§+1);9N + AN ZNi1TN
(40)

This is equivalent to /=1 in (26). As (40) is the
same form with (35), using the relationship of (39), (36)
can be stated as

Kni1=PnZys1(1+ 28 PrZyg) ™

~ AN ZN 41

Therefore, we can get

!
HN—H ~ H(I — A§];.1+£ZN+1Z%+I)0N
=1

-1 (1=
_ T
+ Z H(I ~ A L ENi1- Ty ,)
J=1

=1
AN TNy AV TN TN (42)
(In detail, see Appendix 5)

The volume of calculation decreases considerably for
the above equation compared with those for (38).

If data occurrence speed is faster than the calculation
time for the above mentioned recursive algorithm, these
approaches are not appropriate for the failure detection.
These are the motivation of our considering new method
handling.

Here, we briefly consider the comparison with Residual-
Based Approach (RBA). As for the RBA, see Appendix 6.
Even for RBA, the derived situation is the same as the
original approach, considering the casc that [ data are
newly obtained on the top of N data already received.

RBA have to calculate from (53) to (57) recursively
for / times. This is the same calculation from (35) to (38).
On the other hand, our approach takes less time by simple
calculation method, stated from (39) to (42) and the
reason for this is also stated below (40) and (42). We may
state that our approach is much better in calculating
multiple data receiving online with limited calculation
ability.

6. NUMELICAL EXAMPLE
6.1 Numerical Calculation

We consider examples of the following three cases.

[1] ai=-15, a2=0.7
2l m=-14, 2=06
[3] ay = - 1.2, a>=04

On a 2nd order AR model of (1), we examine the case
N=3000, 5000 [= N/50, N/25, N/10

1000 times simulations were accomplished for each
case with different initial points and the mean and the
variance were examined. Calculation time in the table is
summary of 1000 times calculation. The first 100 data are
ignored and we used MATLAB for calculation.

Hereafter, we state the result mainly for section 3.
Table 1 to Table 6 are their results.

6.2 Remarks

Numerical examples show that the new method has a
fairly good estimation resuit and the calculation time is
less than 1/10 compared with the case when the whole
data are re-calculated. The level of the mean and the °
variance of each Table can safely be said sufficiently
satisfactory.

Table 1. Case [1], N=3000

a3 ap Calculation
! mean | variance | mean | variance | Time (sec}
{x107%) (x107%)

(20) G0 | -1.4997 1.7319 | 06.7001 1.6717 13.38960
-A"'c 120 | -1.4998 | 1.7202 | 8.7000 | 16715 13.3790
300 | -1.4998 ; 1.7836 | 0.7000 | 17308 13 3790
(21) 60 | -14821 235 0 7002 188 1.1420
-B7'D 120 | -1.4845 274 36927 70 1.2420
300 | -1.4935 23 0.6973 21 1.2420
(17) 60 | -1.4997 | 1.7657 | 0.7002 1.6882 1 0820
1st order 120 1 -1 4996} 1.7555 | ©.7000 | 1.6863 1.1620
approxination | 300 | -1.4996 16672 | 0.7000 1.5799 1.1620
(18) GO | -1.4997 17625 | 0.7002 1 6858 1.1610
2nd order 120 } -1.4996 | 1.7480 | 0.7000 ; 1.6801 1.2420
approximation | 300 | -1.4996 1.6559 | 0.7000 1.5742 1.2420
(19) 60 | -1.4996 1.6523 | 0.7000 1.6112 13.4090
120 § -1.4996 | 1.8507 | 06008 | 1.6012 13.4000
300 | -1.4997 | 1.5777 | 0.6999 | 1.5065 13.4006

Table 2. Case [1], N=5000

ay ay Calculation
l mean | variance | mean | variance | Time (sec)
{x107Y) (x107%)

{20) 100 | -1.4998 | 97090 | 8.7001 { 9.6703 28 8610
-A-'¢ 200 | -1.5002 10.619 | 57004 10.054 29.7630
500 ; -1.5001 10.258 | 0.7004 9.9791 30.1340
{21) 100 | -1 4833 116 0.6942 96 1.2320
-8"'D 200 | -1 4920 12 0 6968 36 14520
500 | -1 4958 12 {6978 12 2.1730
{17) 100 | -14997 | 9.8708 | 0.7001 | 9.8395 1.1510
Ist order 200 | -1.5001 { 10683 | 07004 | 9.8656 13520
approximation | 500 | -1.5000 | 99346 | 67004 | 9.6123 1.9430
(18) 100 { -1.4997 | 98552 | 0.7001 9 8250 12220
2nd order 200 | -1 5001 10653 | 0.7004 9 8485 1.4320
approximation | 500 | -1.5000 | 9.8530 | 0.7004 | 9.5323 1.9520
(19) 100 | -1.4999 | 9.4092 | 6.7002 | 9.4313 29.9130
200 | -1.5001 | 10.198 | 0.7003 | 9.4714 30.3940
500 j -15001 | 95457 | 0.7004 | 9.3146 30.7040




70

Kazuhiro Takeyasu -+ Takashi Amemiya - Katsuhiro lino - Shiro Masuda

Table 3. Case [2], N =3000

Table 6. Case [3], N = 5000

ax az Calculation ay az Calculation
4 mean | variance | mean | variance | Time (sec) 1§ mean | variance | mean | variance | Time (sec)
(x10~4) (x107%) (x107%) (x10~4)
(20) 60 | -1.3997 | 21425 | 0.6002 | 2.0565 | 13.3390 (20) 100 | -1.1098 | 15.569 | 0.4005 | 15250 | 29.5720
-A'e | 120 -1.3998 | 21571 | 0.6002 | 20026 | 13.3490 -A-'e | 200 | -1.2002 | 17.494 | 04007 | 16736 | 296030
300 | -1.3998 | 22400 |o.6001 | 2.1694 | 13.3090 500 | -12005 | 16.722 | 04011 16510 | 30.1530
{21) 60 |-1.37911 =222 |o06043| 177 1.1310 {21) 100 | -11845 | 119 | 04077 | 105 1.2520
50 |120-13832| 82 |os5o47| 72 1.2420 -B-'D | 200|-1.1805| 49 |04006| 43 1.4920
300 {-1.3935 | 24 |05986 | 23 1.9136 500 | -11955 | 18 @399 | 18 1.9630
a7 60 | -1.3996 | 2.1287 | 0.6003 | 2.0396 1.0820 (7 100 | -1.1908 | 15.324 | 0.4006 | 15.167 1.1720
tetorder | 120 | -1.3095 | 2.1435 | 0.6001 | 2.0585 1.1620 Worder | 200 | -1.2000 | 17.031 | 0.4007 | 15.899 1.3820
approximation | 300 { -1.3996 | 2.0371 { 0.6002 | 1.9376 1.7620 spproxamation | 500 | -1.2002 | 15938 | 0.4010 | 15.620 1.8020
(18) 60 | -1.3996 | 2.1260 | 0.6003 | 2.0383 1.1420 (18) 100 | -1.1998 | 15326 | 0.4606 | 15.150 1.2520
2ndocder | 120 | -1.3995 | 2.1384 | 0.6001 | 2.0545 1.2420 2ud ovder | 200 | -1.2000 | 17.031 | 0.4006 | 15.905 1.4820
spproximation | 300 { -1.3996 | 20330 | 56001 | 1.9382 18330 spproximaton | 500 | -1.2002 | 15848 | 0.4010 | 13.334 1.9830
(19) 60 |-1.3997 | 2.0445 | 0.6001 | 1.9860 13.4000 {19) 100 | -11999 | 15190 | 04005 | 15.030 30.6440
120 { -1.3997 1 2.0781 | D.6000 | 2.0078 13.4180 200 | -1.2001 | 16.886 | 0.4005 | 15.810 30.2040
300 | -1.3997 | 1.8838 | 0.8000 | 1.8962 13 4200 500 | -1.2004 | 15.625 | 04009 | 15.366 30.2440
Table 4. Case [2], N = 5000 Generally, the following results are expected,
although they do not come true always.
a as Caleulation
L | mean | varance | mean | variance | Time (scc) (a) Accuracy in the parameter estimation is better in
(%1074 (x107%) . X )
(20) 100 | -1.3098 | 12015 | 0.6002 | 11.057 | 28.7210 lgrge N than mn sma'll N. Comparison of estima-
-A7e | 200 |-14002 | 13368 | 0.6005 | 12721 | 286610 tion accuracy is carried out by the value
500 | -1.4003 | 12.821 |0.6007 | 12597 | 29.5420 R .
{21) 100 | -1.3837 | 116 | 05987 | 98 1.2420 l”‘_‘“l"'l‘”_m
-B'D | 200|-13911] 45 05980 | 39 1.4520 L
500 | -13957 | 14 | 05986 " 19830 If two estimations have the same values, then the
an 100 | -1.3997 | 12.005 | 0.6003 | 12.014 11610 case with smaller variance is judged to be better.
tetorder | 200 | -1.4001 | 13.216 | 0.6005 | 12.252 1.3420 (b) Data amount of N + [ in (19) would be better than
approxunation | 500 | -1.4001 12.300 | 0.6006 | 12.017 1.8020 Nin (20) in the estima‘[ign_
(18) 100 | -1.3997 | 11.994 | 0.6003 | 12003 | 12320 (c) The calculation result by only / data amount is
mdorder | 200 | -1,4001 13‘193 0.6005 1224? 1.4020 rough in estimation.
apw:;;m“ ?gg :i;gg; j;;i ?}ﬁgg: ﬁ?zg ;j::;o {d) 2nd orc_ler a‘pprgximgtim{ is better than 1st order
200 | -1.4001 | 12868 | 0.6004 | 11.987 287710 approximation in estimation accuracy.
500 | -1.4002 | 11.955 | 0.6006 | 11748 | 99.6030 {e) 1st order, 2nd order approximation are better than
(20) in estimation accuracy.
(f) 1st order approximation takes less time than 2nd
Table 5. Case [3], N'= 3000 order approximation in calculation
o az Calculation (g) lstorder, 2nd order approximation is much shorter
L) mean Z’i‘l’i‘;ﬁ‘; mean 2"“;‘;‘_‘2? Time (sec) than (19) in calculation time.
X . .
) w0 oo ommm Tomoe | aeasr | 13340 (h) When / become larger, the estimation accuracy
-A7e | 120 | -11009 | 28601 | 0.4006 | 27539 | 13.3190 becomes better.
300 |-1.1608 | 29480 | 0.4004 | 2.8381 13.3190 (i) When the absolute value of g, a> become larger,
{21) 60 | -1.1751 ] 205 | 0.4146 ] 164 1.1320 the estimation accuracy become better.
-s-'p | 120|-11832] 83 |p4o07| 75 1.2520
300 |-1.1936 | 27 | 04013 ) 27 1.9630 Examining these hypotheses, we get Table 7.
(a7 60 |-1.1996 | 27062 | 0.4008 | 2.5859 10710
- b [4
s | 30 | 11996 | 26511 | ao0s | 25098 | 17310 Almost all hypotheses fit with the result, (b) or (e) in
(18) 60 | 11996 | 27061 | 0.4008 | 25875 T1520 the case N = 3000 could not find much difference.
tdorder | 120 | -1.1006 | 27754 | 0.4005 | 2.6509 | 1.2510 Although we find few differences partially, it can be
approximation | 300 | -1,1996 | 2.6360 | 0.4006 | 25131 1.9430 said that all hypotheses from (a} to (1) fit with the result.
(19) 60 |-1.1998 | 2.6648 | 0.4006 | 25654 | 13.3690 As the above hypotheses are based on macroscopic
120 | -1.1998 | 27450 | 04004 | 26337 | 13.3590 viewpoint, we have to examine much further to another
300 ; -1.1998 | 26306 | 0.4004 | 25071 13.3990 cases. From these considerations, it can be said that the
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Table 7. The result of comparison

N =3000 N=5000
1=60 |1=120]/=300]7=100 7 =200 /=500

(a) o)

(b) - 0

(©) o o o} o o

(d) O e} o) o) o} o}

(e) - - - o o o

H O @) @) 0 o) o)

() o o o 0 0 0

(h) o -

) o

O: be able to see trends  —: few difference

estimation accuracy is rough only by the / amount of data.
However, by using the 1st order approximation, we can
get a good estimation result and the calculation time is
less than 1/10 to the case whole data are re-calculated. 1st
order and 2nd order approximation do not have many
differences in estimation.

We examined N = 1000, 2000 (small size) and N =
10000 (large size). When we take smaller N, / becomes
much smaller and the estimation result becomes more
rough. When we take larger size, parameter estimation
result comes quite close to the real values, so that it is
hard to find difference. The cases N = 3000, 5000, which
we take, are the suitable cases with proper weighting
influence and the results show difference between N
amount of data and N + [ amount of data.

7. CONCLUSIONS

A new simplified calculation method to estimate
parameter when / amount of data are gathered following N
amount of data is proposed. Using this method, the
calculation time can be reduced to 1/10 of the one needed
for the recalculation with the whole data.

In the field of plant maintenance, large amount of
data gathered by sensors on multiple machines should be
handled and analyzed speedily. However, there are often
cases that the analyzing machine has limited calculating
ability. In those fields, the proposed method enables
failure detection of the equipment in early stages with a
few new coming data. This method would be applicable
in many data handling fields. Finding and examining such
new field would be a great issue in the near future.

APPENDIX
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Appendix 3

Onii=—[A+B]7 [C+D]
. A‘IB]_l [A7'c+A7'D]

- [I+A‘1B]'l [A”C+ (A'*B) (45)

Appendix 4

(34) can be re-stated as

Onir=(I—Kn1Zh,1)0n + Knpiznya  (46)
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Repeating iteration, we get

I- KN+‘2Z¥\}+2)(I - KN+1Z1TV+1)9N

(I~ Ky 2Zh i) KnpiZni

Oniz =

+Knytrornio 47)
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+(I = KnaZh 1)~ Knp2Z ) Ky e12n41

+(I - KN+32%+3)KN+2:BN+2

+Kn132n 43 (48)
These are generalized as

I
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-3
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+ Kyurng (49)

Appendix5

Utilizing (41), we can easily obtain

Kyi =~ A]_Vl_ 11 LN+i
Kyjit1— = A]_Vl+l~7,ZN+l+1—z
Kyyy = AJ_V%—l-mZNﬂ
KN-H e AXI%«.],HZN-H

Applying these to each corresponding part of (38), we can
get

l
Oni~ [JO- ARL  Zh 240N
i=1
-1 (1=
_ (50)
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7=1 =1
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Appendix 6
Suppose that system is described as
x(k+1) = Az(k) + Tw(k) €))
y(k) = Cx(k) + v(k) (52)

Where input w(k) and measurement noise w(k) have
covariance (J, R for each and are independent white noise
series. Under the normal condition, the optimal estimate

- Takashi Amemiya -
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of k(k+11k) is given by the following Kalman Filter,

Bk A+ k) = AR(K|k — 1) + K(F) {y(k) - Ci(klk — 1)} (53)
K(k) = AP(k|k — 1)CTV (k) (54)

Pk +1|k) = AP(klk — 1) AT +TQTT
- K(K)CP(klk - 1)AT  (55)
V(k) = CP(klk-1)CT + R (56)

Residual series of Kalman Filter y (k) is defined as
Y(k) = y(k) — Ciklk — 1) (57)

7 (k) becomes gaussian white noise series with mean 0,
covariance ¥(k). For failure detection, we have to make
2 . .
x -test to the Residual series. For the latest / amount of
data, we define
k

L=y 3

J=k—=Il+1

THVHvG) (58)

then, L(k) follows »*-distribution. When the system
become irregular , residual become large, so we can guess
the system as

L{k) > e irregular
L(k)y < e:normal

Though there may be may variation of RBA method, the
above method is at least a typical one of RBA (Wilsky,
1976; Yamazaki, 1997)
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