References
- Albert J (1992). A Bayesian Bayesian analysis of a poisson random effects model for home run hitters, The American Statistician, 46, 246-253. https://doi.org/10.1080/00031305.1992.10475898
- Alvarez I, Niemi J, and Simpson M (2014). Bayesian inference for a covariance matrix, Conference on Applied Statistics in Agriculture 2014, 26, 71-82, Available from: arXiv preprint arXiv:1408.4050
- Barnard J, McCulloch R, and Meng XL (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage, Statistica Sinica, 10, 1281-1311.
- Betancourt M, Byrne S, Livingstone S, and Girolami M (2017). The geometric foundations of hamiltonian monte carlo, Bernoulli, 23, 2257-2298. https://doi.org/10.3150/16-BEJ810
- Carpenter B, Gelman A, Hoffman MD et al. (2017). Stan: A probabilistic programming language, Journal of Statistical Software, 76, 1-32. https://doi.org/10.18637/jss.v076.i01
- Chen MH, Shao QM, and Ibrahim JG (2000). Monte Carlo Methods in Bayesian Computation, Springer, New York.
- Choo-Wosoba H, Gaskins J, Levy S, and Datta S (2018). A Bayesian approach for analyzing zero-inflated clustered count data with dispersion, Statistics in Medicine, 37, 801-812. https://doi.org/10.1002/sim.7541
- Consul PC and Jain GC (2004). A generalization of the poisson distribution, Technometrics, 15, 791-799. https://doi.org/10.1080/00401706.1973.10489112
- Conway RW and Maxwell WL (1962). A queuing model with state dependent service rates, Journal of Industrial Engineering, 12, 132-136.
- del Castillo J and P'erez-Casany M (2005). Overdispersed and underdispersed poisson generalizations, Journal of Statistical Planning and Inference, 134, 486-500. https://doi.org/10.1016/j.jspi.2004.04.019
- Famoye F (1993). Restricted generalized poisson regression model, Communications in Statistics (Theory and Methods), 22, 1335-1354. https://doi.org/10.1080/03610929308831089
- Famoye F, Wulu JT, and Singh KP (2004). On the generalized poisson regression model with an application to accident data, Journal of Data Science, 2, 287-295. https://doi.org/10.6339/JDS.2004.02(3).167
- Fitzmaurice G, Davidian M, Verbeke G, and Molenberghs G (2008). Longitudinal Data Analysis, Columbia University, New York.
- Geisser S and Eddy WF (1979). A predictive approach to model selection, Journal of the American Statistical Association, 74, 153-160. https://doi.org/10.1080/01621459.1979.10481632
- Gelman A (2006). Prior distributions for variance parameters in hierarchical models, Bayesian Analysis, 1, 515-533. https://doi.org/10.1214/06-BA117A
- Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, and Rubin DB (2013). Bayesian Data Analysis, Chapman and Hall/CRC, Boca Raton, Florida, USA.
- Guikema S and Goffelt J (2008). A flexible count data regression model for risk analysis, Risk Analysis, 28, 213-223. https://doi.org/10.1111/j.1539-6924.2008.01014.x
- Hedeker D and Gibbons RD (2006). Longitudinal Data Analysis, volume 451, JohnWiley & Sons, Hoboken, New Jersey, USA.
- Hoffman M and Gelman A (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research, 15, 1593-1623.
- Huang A and Wand MP (2013). Simple marginally noninformative prior distributions for covariance matrices, International Society for Bayesian Analysis, 8, 439-452. https://doi.org/10.1214/13-BA815
- Ibarhim JG, Chen MH, and Shiha D (2001). Bayesian Survival Analysis, Springer, New York.
- Leppik I, Dreifuss F, Porter R et al. (1987). A controlled study of progabide in partial seizures: Methodology and results, Neurology, 37, 963-968. https://doi.org/10.1212/WNL.37.6.963
- Lewandowski D, Kurowicka D, and Joe H (2009). Generating random correlation matrices based on vines and extended onion method, Journal of Multivariate Analysis, 100, 1989-2001. https://doi.org/10.1016/j.jmva.2009.04.008
- Morris D, Sellers K, and Menger A (2017). Fitting a flexible model for longitudinal count data using the NLMIXED procedure, SAS Global Forum Paper, 202, 1-6.
- Neal R (2011). MCMC Using Hamiltonian Dynamics (Handbook of Markov Chain Monte Carlo), CRC Press, Boca Raton, Florida.
- Neelon B (2019). Bayesian zero-inflated negative binomial regression based on Polya-Gamma mixtures, Bayesian Analysis, 14, 829-855. https://doi.org/10.1214/18-BA1132
- O'Malley AJ and Zaslavsky AM (2008). Domain-Level covariance analysis for multilevel survey data with structured nonresponse, Journal of the American Statistical Association, 103, 1405-1418. https://doi.org/10.1198/016214508000000724
- Ridout MS and Besbeas P (2004). An empirical model for underdispersed count data, Statistical Modelling, 4, 77-89. https://doi.org/10.1191/1471082X04st064oa
- Sellers KF, Borle S, and Shmueli G (2012). The com-poisson model for count data: A survey of methods and applications, Applied Stochastic Models in Business and Industry, 28, 104-116. https://doi.org/10.1002/asmb.918
- Sellers KF and Morris DS (2017). Underdispersion models: Models that are "under the radar", Communications in Statistics (Theory and Methods), 46, 12075-12086. https://doi.org/10.1080/03610926.2017.1291976
- Sellers KF and Shmueli G (2010). A flexible regression model for count data, The Annals of Applied Statistics, 4, 943-961. https://doi.org/10.1214/09-AOAS306
- Shmueli G, Minka TP, Kadane JB, Borle S, and Boatwright P (2005). A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution, Journal of the Royal Statistical Society: Series C (Applied Statistics), 54, 127-142. https://doi.org/10.1111/j.1467-9876.2005.00474.x
- Spiegelhalter DJ, Best NG, Carlin BP, and Van Der Linde A (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (statistical methodology), 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Thall P and Vail S (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671. https://doi.org/10.2307/2532086
- Tokuda T, Goodrich B, Van Mechelen I, Gelman A, and Tuerlinckx F (2011). Visualizing distributions of covariance matrices, Columbia University, New York, USA, 1, 1-30.
- Tsonaka R and Spittle P (2020). Negative binomial mixed models estimated with the maximum likelihood method can be used for longitudinal rnaseq data, Bioinformatics, 22, Available from: http://doi.org/10.1093/bib/bbaa264
- Wang Z, Wu Y, and Chu H (2018). On equivalence of the LKJ distribution and the restricted Wishart distribution, arXiv: Computation, Available from: arXiv preprint arXiv:1809.04746
- Wu J, Chen MH, Schifano E, Ibrahim JG, and Fisher J (2019). A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials, Statistics in Medicine, 38, 5565-5586. https://doi.org/10.1002/sim.8379
- Zhang D, Chen MH, Ibrahim JG, Boye ME, and Shen W (2017). Bayesian model assessment in joint modeling of longitudinal and survival data with applications to cancer clinical trials, Journal of Computational and Graphical Statistics, 26, 121-133. https://doi.org/10.1080/10618600.2015.1117472
- Zhang X, Pei Y, Zhang L, Gun B, Pendegraft A, Zhuang W, and Yi N (2018). Negative binomial mixed models for analyzing longitudinal microbiome data, Frontiers in Microbiology, 9, Available from: http://doi.org/10.3389/fmicb.2018.01683