DOI QR코드

DOI QR Code

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation

덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용

  • Received : 2022.12.28
  • Accepted : 2023.04.14
  • Published : 2023.04.30

Abstract

A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.

이 논문은 total flux leakage (TFL) 방법을 이용해 외부텐던을 비파괴검사 하는 솔레노이드 형태의 센서의 측정 신호를 후처리하는 방법을 소개한다. 기존에 개발된 TFL 솔레노이드 센서는 1차 코일과 2차 코일로 이루어져 1차 코일에 정현파 형태의 교류를 입력하면 2차 코일에 그 미분에 비례하는 신호가 측정된다. 이때 진폭은 텐던의 단면에 비례하므로 파단 및 부식 여부를 확인할 수 있다. 따라서 TFL센서의 측정신호에서 진폭정보를 추출 하는 것이 중요한데 기존에는 단순히 극댓값을 모아 진폭정보를 취득했다. 하지만 이 방법을 사용하면 측정빈도가 크게 낮아져 추가적인 신호처리 및 인공지능 적용에 많은 제약이 생긴다. 이 논문은 높은 측정빈도를 가진 진폭정보를 추출하기 위해 진폭복조를 응용해 진폭정보를 획득하는 방법을 제시한다. 진폭복조를 이용해 진폭정보를 취득하면 측정빈도를 원시신호와 동일한 수준으로 유지할 수 있다. 이 방법은 TFL센서의 1차 코일 입력 주파수 선택과 센서를 외부텐던에 적용하는 속도 등에 제약을 없애주어 개발 방향에 많은 자유도를 부여한다. 또한 높은 측정빈도를 유지하므로 추가적인 신호처리나 인공지능 등을 활용 하는데 유리함을 제공한다. 제안된 방법은 실내실험을 통해 검증 되었으며 기존 방법과 비교해 어떤 장점이 있는지 분석했다. 제시된 예제의 경우 진폭복조를 사용한 방법이 기존 방법에 비해 100배 높은 측정빈도를 제공 하는 것을 확인 할 수 있었다. 주어진 상황과 구체적인 장비 설정에 따라 차이가 있겠지만 대부분의 경우 진폭복조를 사용해 진폭정보를 추출하면 기존 방법 대비 만족할만한 결과를 얻을 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2022-00142566).

References

  1. Azizinamini, A., and Gull, J. (2012), Improved inspection techniques for steel prestressing/post-tensioning strand, In FDOT Contract No. BDK80 977-13 Final Report-Volume I, Florida Department of Transportation, Florida International University, Miami, FL, USA. 
  2. Fernandes, B., Nims, D., and Devabhaktuni, V. K. (2013), Comprehensive MMF-MFL inspection for corrosion detection and estimation in embedded prestressing strands, J. Civ. Struct. Health Monit., 4, 43-55.  https://doi.org/10.1007/s13349-013-0061-4
  3. FHWA. (2013), Guidelines for Sampling, Assessing, and Restoring Defective Grout in Prestressed Concrete Bridge Post-Tensioning Ducts, FHWA Publication Number: FHWA-HRT-13-027 (PDF version), USA. 
  4. Fricker, S., and Vogel, T. (2015), Detecting wire breaks in a prestressed concrete road bridge with continuous acoustic monitoring, Bridge Maint. Saf. Manag. Life-Cycle Perform. Cost, 847-850. 
  5. Hamming, R. W. (1989), Digital Filters (3rd edition), Prentice Hall International (UK) Ltd., Hertfordshire, United Kingdom. 
  6. Han M., Park J. H., Lee J. H., and Min J. (2021), Analysis of structural safety for rebar exposure and corrosion in PSC I-girder bridge slab, J. Korea Inst. Struct. Maint. Insp., 25(1), 67-74. 
  7. Hurlebaus, S., Hueste, M., Karthik, M., and Terzioglu, T. (2016), Condition Assessment of Bridge Post-Tensioning and Stay Cable Systems Using NDE Methods, NCHRP Report 14-28, NCHRP, Transportation Research Board of the National Academies: Washington, DC, USA, 7-19. 
  8. Kim, K., Youn, S., and Youn, S. (2019), Corrosion of Post-Tensioned Tendons and Technology of Grouting, Magazine of Korea Concrete Institute, Seoul, Korea, 31, 18-23. 
  9. Kwahk, I., Park, K. -Y., Choi, J. -Y., Kwon, H., and Joh, C. (2020), Non-Destructive for Sectional Loss of External Tendon of Prestressed Concrete Structures Using Total Flux Leakage, Applied Sciences, MDPI, 10, 7398. 
  10. Lee, B. Y., Koh, K. T., Ismail, M. A., Ryu, H. -S., and Kwon, S. J. (2017), Corrosion and strength behaviors in prestressed tendon under various tensile stress and impressed current conditions, Adv. Mater. Sci. Eng., 2017, 1-7.  https://doi.org/10.1155/2017/8575816
  11. Proakis, J. G., and Salehi, M. (2002), Communication Systems Engineering (2nd edition), Prentice Hall, Inc., New Jersey. 
  12. Ryu, H. S., An, G. H., Hwang, C. S., and Kwon S. J. (2017), Changes in corrosion progress and ultimate load of tendon under 20% and 40% of ultimate loading conditions, J. Korea Inst. Struct. Maint. Insp., 21(4), 47-52. 
  13. Yoon, I. -S., Kang, T. H. K., and Shin, H. -Y. (2019), Evaluation of corrosion prevention systems of strands for PSC structures, J. Korea Concr. Inst., 31, 557-565.  https://doi.org/10.4334/JKCI.2019.31.6.557
  14. Yu, C., Kim, K., Seol, D., and Youn, S. (2017), Endoscope survey of internal, external tendon in PSC Box Girder, In Proceedings of the Annual Conference of Korea Concrete Institute, Andong-Si, Korea.