DOI QR코드

DOI QR Code

Low-iridium Doped Single-crystalline Hydrogenated Titanates (H2Ti3O7) with Large Exposed {100} Facets for Enhanced Oxygen Evolution Reaction under Acidic Conditions

{100} 단결정 수소화 티타네이트(H2Ti3O7)를 활용한 저함량 Irridium 수전해 양극 촉매 개발

  • Sun Young Jung (Department of Energy Engineering, Konkuk University) ;
  • HyukSu Han (Department of Energy Engineering, Konkuk University)
  • 정선영 (건국대학교 미래에너지공학과) ;
  • 한혁수 (건국대학교 미래에너지공학과)
  • Received : 2023.03.23
  • Accepted : 2023.03.30
  • Published : 2023.03.30

Abstract

Development of efficient and stable electrocatalysts for oxygen evolution reaction (OER) under acidic conditions is desirable goal for commercializing proton exchange membrane (PEM) water electroyzer. Herein, we report iridium-doped hydrogenated titanate (Ir-HTO) nanobelts as a promising catalyst with a low-Ir content for the acidic OER. Addition of low-Ir (~ 3.36 at%) into the single-crystalline HTO nanobelts with large exposed {100} facets significantly boost catalytic activity and stability for OER under acidic conditions. The Ir-HTO outperforms the commenrcial benchmark IrO2 catalyst; an overpotential for delivering 10 mA cm-2 current density was reduced to about 25% for the Ir-HTO. Moreover, the catalytic performance of Ir-HTO is positioned as the most efficient electrocatalyst for the acidic OER. An improved intrinsic catalytic activity and stability are also confirmed for the Ir-HTO through in-depth electrochemical characterizations. Therefore, our results suggest that low-Ir doped single-crystalline HTO nanobelts can be a promising catalyst for efficient and durable OER under acidic conditions.

산성 조건에서의 산소 발생 반응(OER)의 효율 향상 및 안정적인 전기 촉매 개발은 양이온 교환 막 (PEM) 수전해 장치의 상용화를 위한 바람직한 목표다. 여기서 우리는 산성 OER에 대해 Ir 함량이 낮은 유망한 촉매로서 Ir이 도핑된 수소화 티타네이트 (Ir-HTO) 나노벨트를 보고한다. 크게 확인할 수 있는 {100}면이 있는 단결정 HTO 나노벨트에 낮은 함량의 Ir(~3.36 at %)을 추가하면 산성 조건에서 OER에 대한 촉매 활성과 안정성이 크게 향상된다. Ir-HTO는 상용적인 대조군 IrO2 촉매보다 성능이 뛰어나다. 10mA cm-2의 전류밀도에서 과전압은 Ir-HTO가 25% 감소했다. Ir-HTO 촉매 성능은 산성 OER에 대한 가장 효율적인 전기 촉매로서 자리 잡고 있다. 심층적인 전기화학적 특성화를 통해 Ir-HTO에 대해 개선된 고유한 촉매 활성 및 안정성도 확인되었다. 따라서, 우리의 실험결과는 낮은 함량의 Ir이 도핑된 단결정 HTO 나노벨트가 산성조건에서 효율적이고 내구성 있는 OER 촉매로 유망 될 수 있음을 보여준다.

Keywords

Acknowledgement

본 연구는 미래창조과학부의 한국연구재단 기초과학연구사업 (2021R1A2C2091497 및 2022R1A2C2010162)의 지원을 받아 진행되었다. 이 연구의 일부는 교육부 (2022RIS005)의 지원을 받는 한국연구재단(NRF)의 "지역혁신전략(RIS)"의 지원도 받았다. 이 연구의 일부는 산업통상자원부의 지원을 받았다 (20018145).

References

  1. M. A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, and J. Zhang, "Recent progresses in electrocatalysts for water electrolysis", Electrochemical Energy Reviews, 1, 483-530 (2018). https://doi.org/10.1007/s41918-018-0014-z
  2. E. Fabbri, A. Habereder, K. W altar, R. Kotz, and T. J. Schmidt, "Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction", Catal. Sci. Technol., 4, 3800-3821 (2014). https://doi.org/10.1039/C4CY00669K
  3. F. Gao, J. He, H. Wang, J. Lin, R. Chen, K. Yi, F. Huang, Z. Lin, and M. Wang, "Te-mediated electro-driven oxygen evolution reaction", Nano Research Energy, 1, e9120029 (2022).
  4. L. Zhang, J. Liang, L. Yue, K. Dong, J. Li, D. Zhao, Z. Li, S. Sun, Y. Luo, Q. Liu, G. Cui, A. A. Alshehri, X. Guo, and X. Sun, "Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation", Nano Research Energy, 1, e9120028 (2022).
  5. T. Fu, L. Sun, G. Li, Y. Xiang, Y. Tang, J. Sha, Y. Lei, Z. Xiong, Y. Si, and C. Guo, "Defect enriched N, S-codoped carbon sheets as an efficient electrocatalyst to oxygen reduction reaction", Journal of Alloys and Compounds, 935, 167923 (2023).
  6. J. Liu, Z. P. Li, and B. H. Liu, "Highly Active CoFe Alloy Nanoparticles Encapsulated in N-doped Carbon Nanostructures for Oxygen Reduction Reaction in Both Alkaline and Acidic Media", Journal of Alloys and Compounds, 944, 169166 (2023).
  7. D. Zhang, L. Zhang, C. He, Y. Huang, Q. Wu, J. Jiang, K. Liu, H. Wang, Y. Cai, and Q. Li, "Nanosheets/nanoparticlescomposed hierarchical manganese oxides enabled by molybdenum nitride rods for boosted oxygen reduction reaction electrocatalysis", Journal of Alloys and Compounds, 938, 168627 (2023).
  8. K. Li, Y. Zhang, P. Wang, X. Long, L. Zheng, G. Liu, X. He, and J. Qiu, "Core-Shell ZIF-67@ ZIF-8-derived multi-dimensional cobalt-nitrogen doped hierarchical carbon nanomaterial for efficient oxygen reduction reaction", Journal of Alloys and Compounds, 903, 163701 (2022).
  9. N. Bhuvanendran, M. G. Choi, D. Kim, and S. Y. Lee, "Improved trifunctional electrocatalytic performance of integrated Co3O4 spinel oxide morphologies with abundant oxygen vacancies for oxygen reduction and water-splitting reactions", Journal of Alloys and Compounds, 935, 168079 (2023).
  10. R. Rohib, E. Lee, C. Kim, H. Lee, and G.-G. Park, "Highly durable core (Nb4N5)-shell (NbOx)-structured non-precious metal catalyst for oxygen reduction reaction in acidic media", Journal of Alloys and Compounds, 934, 167882 (2023).
  11. L. Ai, Y. Wang, Y. Luo, Y. Tian, S. Yang, M. Chen, and J. Jiang, "Robust interfacial Ru-RuO2 heterostructures for highly efficient and ultrastable oxygen evolution reaction and overall water splitting in acidic media", Journal of Alloys and Compounds, 902, 163787 (2022).
  12. X. Li, F. Duan, X. Lu, Y. Gang, W. Zheng, Y. Lin, L. Chen, Y. Dan, and X. Cheng, "Surface engineering of flower-like Co-NC on carbon paper for improved overall water splitting", Journal of Alloys and Compounds, 935, 168128 (2023).
  13. Y. Yuan, Y. Liu, C. Li, S. Feng, Q. Liu, and J. Huo, "Hierarchically porous N-doped carbon nanosheet networks with ultrafine encapsulated Fe3C and Fe-Nx for oxygen reduction reaction in alkaline and acidic media", Journal of Alloys and Compounds, 920, 165821 (2022).
  14. L.-H. Yang, R. Luo, X.-J. Wen, Z.-T. Liu, Z.-H. Fei, and L. Hu, "Nanoconfinement effects of Ni@ CNT for efficient electrocatalytic oxygen reduction and evolution reaction", Journal of Alloys and Compounds, 897, 163206 (2022).
  15. D.-E. Lee, S. Moru, W.-K. Jo, and S. Tonda, "Metal-and nonmetal-incorporated vitamin B12 on graphene as a bio-derived electrocatalyst for the high-performance oxygen reduction reaction in acidic media", Journal of Alloys and Compounds, 912, 165118 (2022).
  16. C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, and C. Yang, "Science, Exceptional performance of hierarchical Ni-Fe oxyhydroxide@ NiFe alloy nanowire array electrocatalysts for large current density water splitting", Energy Environ. Sci., 13, 86-95 (2020). https://doi.org/10.1039/c9ee02388g
  17. J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler, and W. Schuhmann, "Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution", Advanced Energy Materials, 6(6), 1502313 (2016).
  18. J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. De La Mata, J. Arbiol, M. Muhler, B. R. Cuenya, and W. Schuhmann, "Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution", Advanced Energy Materials, 7(17), 1700381, (2017).
  19. X. Liang, L. Shi, R. Cao, G. Wan, W. Yan, H. Chen, Y. Liu, and X. Zou, "Perovskite-Type Solid Solution Nano-Electrocatalysts Enable Simultaneously Enhanced Activity and Stability for Oxygen Evolution", Adv. Mater., 32(34), 2001430 (2020).
  20. X. Liang, L. Shi, Y. Liu, H. Chen, R. Si, W. Yan, Q. Zhang, G.-D. Li, L. Yang, and X. Zou, "Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions", Angew. Chem. Int. Ed., 58(23), 7497-7877 (2019). https://doi.org/10.1002/anie.201905757
  21. H. Chen, L. Shi, X. Liang, L. Wang, T. Asefa, and X. Zou, "Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts", Angew. Chem. Int. Ed., 59(44), 19654-19658 (2020). https://doi.org/10.1002/anie.202006756
  22. A. E.-Barrio, E. C.-Martinez, M. Zarrabeitia, M. A. M.- Marquez, M. C.-Cabanas, and T. J. P. C. C. P. Rojo, "Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries", Phys. Chem. Chem. Phys., 17, 6988-6994 (2015). https://doi.org/10.1039/c4cp03345k
  23. E. Morgado Jr, P. Jardim, B. A. Marinkovic, F. C. Rizzo, M. A. De Abreu, J. L. Zotin, and A. S. Araujo, "Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials", Nanotechnology, 18, 495710 (2007).
  24. S. Papp, L. Korosi, V. Meynen, P. Cool, E. F. Vansant, and I. Dekany, "The influence of temperature on the structural behaviour of sodium tri-and hexa-titanates and their protonated forms", Journal of Solid State Chemistry, 178(5), 1614-1619 (2005). https://doi.org/10.1016/j.jssc.2005.03.001
  25. S. Zhang, Q. Chen, and L.-M. Peng, "Structure and formation of H2Ti3O7 nanotubes in an alkali environment", Phys. Rev. B, 71, 014104 (2005).
  26. K. R. Zhu, Y. Yuan, M. S. Zhang, J. M. Hong, Y. Deng, and Z. Yin, "Structural transformation from NaHTi3O7 nanotube to Na2Ti6O13 nanorod", Solid State Communications, 144(10-11), 450-453 (2007). https://doi.org/10.1016/j.ssc.2007.09.015
  27. G.-N. Zhu, C.-X. Wang, and Y.-Y. Xia, "Structural transformation of layered hydrogen trititanate (H2Ti3O7) to TiO2 (B) and its electrochemical profile for lithium-ion intercalation", Journal of Power Sources, 196(5), 2848-2853 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.023
  28. Q. Wang, L. Shen, T. Xue, G. Cheng, C. Z. Huang, H. J. Fan, and Y. P. Feng, "Single-Crystalline TiO2(B) Nanobelts with Unusual Large Exposed {100} Facets and Enhanced Li-Storage Capacity", Advanced Functional Materials, 31(2), 2002187 (2021).
  29. H. Tang, Z. Zhou, C. C. Bowland, and H. A. Sodano, "Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites", Nano Energy, 17, 302-307 (2015). https://doi.org/10.1016/j.nanoen.2015.09.002
  30. Q. Chen, G. H. Du, S. Zhang, and L.-M. Peng, "The structure of trititanate nanotubes", Acta Crystallogr B., 58, 587-593 (2002). https://doi.org/10.1107/S0108768102009084
  31. S. Anantharaj, H. Sugime, and S. Noda, "Why shouldn't double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?", Journal of Electroanalytical Chemistry, 903, 115842 (2021).
  32. A. Moysiadou, S. Lee, C.-S. Hsu, H. M. Chen, and X. Hu, "Supporting Information Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a RateDetermining Step", J. Am. Chem. Soc., 142, 11901-11914 (2020). https://doi.org/10.1021/jacs.0c04867
  33. F. Tang, S. Guo, Y. Sun, X. Lin, J. Qiu, and A. Cao, "Facile Synthesis of Fe-Doped CoO Nanotubes as High-Efficient Electrocatalysts for Oxygen Evolution Reaction", Small Structures, 3(4), 2100211 (2022).
  34. N. Wen, Y. Xia, H. Wang, D. Zhang, H. Wang, X. Wang, X. Jiao, and D. Chen, "Large-Scale Synthesis of Spinel NixMn3-xO4 Solid Solution Immobilized with Iridium Single Atoms for Efficient Alkaline Seawater Electrolysis", Advanced Science, 9(16), 2200529 (2022).
  35. X. Kong, C. Zeng, X. Wang, J. Huang, C. Li, J. Fei, J. Li, and Q. Feng, "Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide", Scientific Reports, 6, 29049 (2016).
  36. C. Xiao, "Non-Precious Metal-Based Mesoporous Electrocatalysts for Enhanced Oxygen Evolution Reactions", in, UNSW Sydney, (2015).
  37. E. Enkhtuvshin, K. M. Kim, Y.-K. Kim, S. Mihn, S. J. Kim, S. Y. Jung, N. T. T. Thao, G. Ali, M. Akbar, K. Y. Chung, K. H. Chae, S. Kang, T. W. Lee, H. G. Kim, S. Choi, and H. Han, "Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni-Fe-Al-Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis", J. Mater. Chem. A, 9, 27332-27346 (2021). https://doi.org/10.1039/D1TA07126B
  38. Y.-R. Hong, K. M. Kim, J. H. Ryu, S. Mhin, J. Kim, G. Ali, K. Y. Chung, S. Kang, and H. Han, "Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water oxidation electrocatalysts", Advanced Functional Materials, 30(38), 2004330 (2020).
  39. V. W. Y. Tam and C. M. Tam, "Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach", Journal of Materials Science, 42, 3592-3602 (2007). https://doi.org/10.1007/s10853-006-0379-y
  40. D. Weber, L. M. Schoop, D. Wurmbrand, S. Laha, F. Podjaski, V. Duppel, K. Muller, U. Starke, and B. V. Lotsch, "IrOOH nanosheets as acid stable electrocatalysts for the oxygen evolution reaction", J. Mater. Chem. A, 6, 21558-21566 (2018). https://doi.org/10.1039/C8TA07950A
  41. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.-C. Wang, and S. Guo, "Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis", Adv. Mater., 29(47), 1703798 (2017).
  42. F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang, J. Zhou, C. Yang, M. Luo, Y. Yang, Y. Li, P. Gao, and S. Guo, "Iridium-tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts", ACS Cent. Sci., 4, 1244-1252 (2018). https://doi.org/10.1021/acscentsci.8b00426
  43. J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, and S.-Z. Qiao, "Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation", J. Am. Chem. Soc., 143, 5201-5211 (2021). https://doi.org/10.1021/jacs.1c01525
  44. A. L. Strickler, D. Higgins, and T. F. Jaramillo, "Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid", ACS Appl. Energy Mater., 2, 5490-5498 (2019). https://doi.org/10.1021/acsaem.9b00658
  45. L. Yang, H. Chen, L. Shi, X. Li, X. Chu, W. Chen, N. Li, and X. Zou, "Enhanced Iridium mass activity of 6H-phase, Irbased perovskite with nonprecious incorporation for acidic oxygen evolution electrocatalysis", ACS Appl. Mater. Interfaces, 11, 42006-42013 (2019). https://doi.org/10.1021/acsami.9b11287
  46. J. Shan, T. Ling, K. Davey, Y. Zheng, and S.-Z. Qiao, "Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments", Adv. Mater., 31(17), 1900510 (2019).