• Title/Summary/Keyword: hydrogenated titanate

Search Result 1, Processing Time 0.014 seconds

Low-iridium Doped Single-crystalline Hydrogenated Titanates (H2Ti3O7) with Large Exposed {100} Facets for Enhanced Oxygen Evolution Reaction under Acidic Conditions ({100} 단결정 수소화 티타네이트(H2Ti3O7)를 활용한 저함량 Irridium 수전해 양극 촉매 개발)

  • Sun Young Jung;HyukSu Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • Development of efficient and stable electrocatalysts for oxygen evolution reaction (OER) under acidic conditions is desirable goal for commercializing proton exchange membrane (PEM) water electroyzer. Herein, we report iridium-doped hydrogenated titanate (Ir-HTO) nanobelts as a promising catalyst with a low-Ir content for the acidic OER. Addition of low-Ir (~ 3.36 at%) into the single-crystalline HTO nanobelts with large exposed {100} facets significantly boost catalytic activity and stability for OER under acidic conditions. The Ir-HTO outperforms the commenrcial benchmark IrO2 catalyst; an overpotential for delivering 10 mA cm-2 current density was reduced to about 25% for the Ir-HTO. Moreover, the catalytic performance of Ir-HTO is positioned as the most efficient electrocatalyst for the acidic OER. An improved intrinsic catalytic activity and stability are also confirmed for the Ir-HTO through in-depth electrochemical characterizations. Therefore, our results suggest that low-Ir doped single-crystalline HTO nanobelts can be a promising catalyst for efficient and durable OER under acidic conditions.