DOI QR코드

DOI QR Code

SARS-CoV-2 infection induces expression and secretion of lipocalin-2 and regulates iron in a human lung cancer xenograft model

  • Sangkyu Park (Biotechnology Research Institute, Chungbuk National University) ;
  • Dongbum Kim (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Jinsoo Kim (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Hyung-Joo Kwon (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Younghee Lee (Biotechnology Research Institute, Chungbuk National University)
  • Received : 2023.09.18
  • Accepted : 2023.10.30
  • Published : 2023.12.31

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to various clinical symptoms including anemia. Lipocalin-2 has various biological functions, including defense against bacterial infections through iron sequestration, and it serves as a biomarker for kidney injury. In a human protein array, we observed increased lipocalin-2 expression due to parental SARS-CoV-2 infection in the Calu-3 human lung cancer cell line. The secretion of lipocalin-2 was also elevated in response to parental SARS-CoV-2 infection, and the SARS-CoV-2 Alpha, Beta, and Delta variants similarly induced this phenomenon. In a Calu-3 implanted mouse xenograft model, parental SARSCoV-2 and Delta variant induced lipocalin-2 expression and secretion. Additionally, the iron concentration increased in the Calu-3 tumor tissues and decreased in the serum due to infection. In conclusion, SARS-CoV-2 infection induces the production and secretion of lipocalin-2, potentially resulting in a decrease in iron concentration in serum. Because the concentration of iron ions in the blood is associated with anemia, this phenomenon could contribute to developing anemia in COVID-19 patients.

Keywords

Acknowledgement

This research was supported by grants from the National Research Foundation (NRF-2022M3A9I2082292, NRF-2021R1A2C1006767) funded by the Ministry of Science and ICT in the Republic of Korea.

References

  1. Zhu N, Zhang D, Wang W et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382, 727-733 https://doi.org/10.1056/NEJMoa2001017
  2. Letko M, Marzi A and Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562-569 https://doi.org/10.1038/s41564-020-0688-y
  3. Lauer SA, Grantz KH, Bi Q et al (2020) The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172, 577-582 https://doi.org/10.7326/M20-0504
  4. Wang Y, Wang Y, Chen Y and Qin Q (2020) Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 92, 568-576 https://doi.org/10.1002/jmv.25748
  5. Bergamaschi G, Borrelli de Andreis F, Aronico N et al (2021) Anemia in patients with COVID-19: pathogenesis and clinical significance. Clin Exp Med 21, 239-246 https://doi.org/10.1007/s10238-020-00679-4
  6. Triebel S, Blaser J, Reinke H and Tschesche H (1992) A 25 Kda alpha-2-microglobulin-related protein is a component of the 125-Kda form of human gelatinase. FEBS Lett 314, 386-388 https://doi.org/10.1016/0014-5793(92)81511-J
  7. Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917-921 https://doi.org/10.1038/nature03104
  8. Behairy Bel S, Salama EI, Allam AA, Ali MA and Elaziz AM (2011) Lipocalin-2 as a marker of bacterial infections in chronic liver disease: a study in Egyptian children. Egypt J Immunol 18, 31-36
  9. Thanh TT, Casals-Pascual C, Ny NTH et al (2021) Value of lipocalin 2 as a potential biomarker for bacterial meningitis. Clin Microbiol Infect 27, 724-730 https://doi.org/10.1016/j.cmi.2020.07.006
  10. Wilson R, Belluoccio D, Little CB, Fosang AJ and Bateman JF (2008) Proteomic characterization of mouse cartilage degradation in vitro. Arthritis Rheum 58, 3120-3131 https://doi.org/10.1002/art.23789
  11. Bolignano D, Donato V, Coppolino G et al (2008) Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 52, 595-605 https://doi.org/10.1053/j.ajkd.2008.01.020
  12. Chakraborty S, Kaur S, Guha S and Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826, 129-169 https://doi.org/10.1016/j.bbcan.2012.03.008
  13. Jang Y, Lee JH, Wang Y and Sweeney G (2012) Emerging clinical and experimental evidence for the role of lipocalin-2 in metabolic syndrome. Clin Exp Pharmacol Physiol 39, 194-199 https://doi.org/10.1111/j.1440-1681.2011.05557.x
  14. Berard JL, Zarruk JG, Arbour N et al (2012) Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia 60, 1145-1159 https://doi.org/10.1002/glia.22342
  15. Asimakopoulou A, Weiskirchen S and Weiskirchen R (2016) Lipocalin 2 (LCN2) Expression in hepatic malfunction and therapy. Front Physiol 7, 430
  16. Hu C, Yang K, Li M, Huang W, Zhang F and Wang H (2018) Lipocalin 2: a potential therapeutic target for breast cancer metastasis. Onco Targets Ther 11, 8099-8106 https://doi.org/10.2147/OTT.S181223
  17. Chaudhary N, Choudhary BS, Shah SG et al (2021) Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer 149, 1495-1511 https://doi.org/10.1002/ijc.33711
  18. Landro L, Damas JK, Flo TH et al (2008) Decreased serum lipocalin-2 levels in human immunodeficiency virus-infected patients: increase during highly active anti-retroviral therapy. Clin Exp Immunol 152, 57-63 https://doi.org/10.1111/j.1365-2249.2008.03592.x
  19. Abers MS, Delmonte OM, Ricotta EE et al (2021) An immune-based biomarker signature is associated with mortality in COVID-19 patients. Jci Insight 6, e144455
  20. He L, Zhang QZ, Li Z et al (2021) Incorporation of urinary neutrophil gelatinase-associated lipocalin and computed tomography quantification to predict acute kidney injury and in-hospital death in COVID-19 patients. Kidney Dis (Basel) 7, 120-130 https://doi.org/10.1159/000511403
  21. Gupta A, Al-Tamimi AO, Halwani R, Alsaidi H, Kannan M and Ahmad F (2022) Lipocalin-2, S100A8/A9, and cystatin C: potential predictive biomarkers of cardiovascular complications in COVID-19. Exp Biol Med (Maywood) 247, 1205-1213 https://doi.org/10.1177/15353702221091990
  22. Miharada K, Hiroyama T, Sudo K, Nagasawa T and Nakamura Y (2005) Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion. FASEB J 19, 1881-1883 https://doi.org/10.1096/fj.05-3809fje
  23. Jiang W, Constante M and Santos MM (2008) Anemia upregulates lipocalin 2 in the liver and serum. Blood Cells Mol Dis 41, 169-174 https://doi.org/10.1016/j.bcmd.2008.04.006
  24. Suriawinata E and Mehta KJ (2022) Iron and iron-related proteins in COVID-19. Clin Exp Med 23, 969-991 https://doi.org/10.1007/s10238-022-00851-y
  25. Neufeldt CJ, Cerikan B, Cortese M et al (2022) SARSCoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-kappaB. Commun Biol 5, 45
  26. Blanco-Melo D, Nilsson-Payant BE, Liu WC et al (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036-1045 https://doi.org/10.1016/j.cell.2020.04.026
  27. Saber MM, Nomair AM, Osman AM, Nomeir HM and Farag NM (2022) Endothelial monocyte-activating polypeptide-ii is an indicator of severity and mortality in COVID-19 patients. Vaccines (Basel) 10, 2177
  28. Mueller CA, Richt JA, Meyermann R, Deininger M and Schluesener H (2003) Accumulation of the proinflammatory cytokine endothelial-monocyte-activating polypeptide II in ramified microglial cells in brains of Borna virus infected Lewis rats. Neurosci Lett 339, 215-218 https://doi.org/10.1016/S0304-3940(03)00024-7
  29. Kim D, Maharjan S, Kim J et al (2021) MUC1-C influences cell survival in lung adenocarcinoma Calu-3 cells after SARS-CoV-2 infection. BMB Rep 54, 425-430 https://doi.org/10.5483/BMBRep.2021.54.8.018
  30. Kim J, Kim M, Kim D et al (2022) Targeting the interaction between spike protein and nucleocapsid protein for suppression and detection of human coronavirus OC43. Front Immunol 13, 835333
  31. Sanjuan R and Domingo-Calap P (2016) Mechanisms of viral mutation. Cell Mol Life Sci 73, 4433-4448 https://doi.org/10.1007/s00018-016-2299-6
  32. Kim D, Kim J, Kim M et al (2023) Analysis of spike protein variants evolved in a novel in vivo long-term replication model for SARS-CoV-2. Front Cell Infect Microbiol 13, 1280686
  33. Schmidt-Ott KM, Mori K, Li JY et al (2007) Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 18, 407-413 https://doi.org/10.1681/ASN.2006080882
  34. Devireddy LR, Gazin C, Zhu X and Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123, 1293-1305 https://doi.org/10.1016/j.cell.2005.10.027
  35. Choi JW, Fujii T and Fujii N (2016) Elevated plasma neutrophil gelatinase-associated lipocalin level as a risk factor for anemia in patients with systemic inflammation. Biomed Res Int 2016, 9195219
  36. Bolignano D, Coppolino G, Donato V, Lacquaniti A, Bono C and Buemi M (2010) Neutrophil gelatinase-associated lipocalin (NGAL): a new piece of the anemia puzzle? Med Sci Monit 16, RA131-135
  37. Rodrigues PN, Gomes SS, Neves JV et al (2011) Mycobacteria-induced anaemia revisited: a molecular approach reveals the involvement of NRAMP1 and lipocalin-2, but not of hepcidin. Immunobiology 216, 1127-1134 https://doi.org/10.1016/j.imbio.2011.04.004
  38. Chavda VP, Patel AB and Vaghasiya DD (2022) SARSCoV-2 variants and vulnerability at the global level. J Med Virol 94, 2986-3005
  39. Yang Z, Zhang S, Tang YP et al (2022) Clinical characteristics, transmissibility, pathogenicity, susceptible populations, and re-infectivity of prominent COVID-19 variants. Aging Dis 13, 402-422 https://doi.org/10.14336/AD.2021.1210
  40. WHO (2023) Historical working definitions and primary actions for SARS-CoV-2 variants. (2023, Oct 10) https://www.who.int/publications/m/item/historical-working-definitions-and-primary-actions-for-sars-cov-2-variants